Skip to main content

Risk and Reliability Analysis

  • Chapter
  • First Online:
Risk and Reliability Analysis: Theory and Applications

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

Natural and anthropogenic hazards pose significant risks to individuals and communities. Over the past few decades, risk and reliability analysis have gone from a specialty topic to a mainstream subject in engineering, becoming essential tools for informed decision making, hazard mitigation, and planning. This book presents the state-of-the-art in risk and reliability analysis with a unique collection of contributions from some of the foremost scholars in the field. Combining the most advanced analysis techniques with practical applications, this book is one of the most comprehensive and up-to-date references available on this subject, makes the state-of-the-art in risk and reliability analysis accessible to a large audience, and helps make risk and reliability analysis the rigorous foundation of engineering decision-making. The fundamental concepts needed to conduct risk and reliability analysis are covered in detail, providing readers with a sound understanding of the field and making the book a powerful tool for students, researchers and practitioners (engineering professionals and risk analysts) alike. The book is a tribute to Professor Armen Der Kiureghian, one of the fathers of modern risk and reliability analysis. During his career, Professor Der Kiureghian has made fundamental and revolutionary research contributions to this field. He has pioneered methods for safety and reliability assessment of complex structures and for stochastic seismic analysis of buildings, bridges and critical equipment. Many of his publications have become mandatory readings for the current and future generations of students, researchers and practitioners. The book is organized into six parts. Part I gives a general introduction of the book including a discussion of its goal and contributions, presents an overview of the field of risk and reliability analysis, and discusses the role of Armen Der Kiureghian in modern risk and reliability analysis. Part II focuses specifically on reliability analysis, and includes a description of efficient computational methods and their applications to some of the most complex real-life problems. Part III covers the subject of stochastic dynamics, presenting both methods and applications. Part IV discusses methods for sensitivity analysis and optimization in the context of risk and reliability analysis. Part V focuses on statistical analysis and the development of probabilistic models. Finally, Part VI covers life-cycle and resilience analysis as well as different financial tools for risk mitigation. While each part has a specific focus, many of the chapters build on and use the methods and techniques covered in some of the other parts of the book. Such links help understand the relation between the different subjects, which is needed for a thorough understanding of the topic of risk and reliability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    References include (Moghtaderi-Zadeh et al. 1982; Der Kiureghian and Moghtaderi-Zadeh 1982; Der Kiureghian 1983, 1996a, b; Moghtaderi-Zadeh and Der Kiureghian 1983; Der Kiureghian and Liu 1986; Liu and Der Kiureghian 1986, 1991a; Der Kiureghian et al. 1987, 1994; Der Kiureghian and Ke 1988; Der Kiureghian 1996a, b; Der Kiureghian and DeStefano 1991; Jang et al. 1994; Der Kiureghian and Dakessian 1998; Ambartzumian et al. 1998; Der Kiureghian and Zhang 1999; Corr et al. 2001; Der Kiureghian 2001a; Gardoni et al. 2002; Sudret and Der Kiureghian 2002; Song and Der Kiureghian 2003; Der Kiureghian et al. 2006, 2007; Haukaas and Der Kiureghian 2006, 2007; Der Kiureghian and Song 2008; Yang et al. 2009; Straub and Der Kiureghian 2011) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time of writing this introduction).

  2. 2.

    References include (Der Kiureghian 1978; Der Kiureghian 1980a, b, 1981, 1989a, b; Wilson et al. 1981; Sackman et al. 1983; Der Kiureghian et al. 1983; Nour-Omid et al. 1983; Igusa et al. 1984; Igusa and Der Kiureghian 1985a, b, c, 1988a, b, 1992; Smeby and Der Kiureghian 1985; Asfura and Der Kiureghian 1986; Lin et al. 1986; Sitar et al. 1987; Der Kiureghian and Crempien 1989; Der Kiureghian and Neuenhofer 1992; Der Kiureghian and Wung 1992; Chua et al. 1992; Der Kiureghian and Nakamura 1993; Zhang and Der Kiureghian 1994; Der Kiureghian 1996a, b; Ambartzumian et al. 1996; Casciati et al. 1997; Menun and Der Kiureghian 1998; Khachian et al. 1998; Der Kiureghian 2000; Menun and Der Kiureghian 2000a, b; Der Kiureghian et al. 2001; Hong et al. 2001, 2005; Franchin et al. 2002; Der Kiureghian and Sackman 2005; Koo et al. 2005; Der Kiureghian 2005, 2007; Song and Der Kiureghian 2006a, b; Song et al. 2007; Fujimura and Der Kiureghian 2007; Rezaeian and Der Kiureghian 2008; Taniguchi et al. 2008; Der Kiureghian and Fujimura 2009; Rezaeian and Der Kiureghian 2010; Garrè and Der Kiureghian 2010; Konakli and Der Kiureghian 2011, 2012, 2014; Rezaeian and Der Kiureghian 2012; Alibrandi and Der Kiureghian 2012; Konakli et al. 2014) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time of writing this introduction).

  3. 3.

    References include (Liu and Der Kiureghian 1991b, 1993; Zhang and Der Kiureghian 1993; Kirjner-Neto et al. 1998; Royset et al. 2001a, b, 2003, 2006; Haukaas and Der Kiureghian 2005, 2007) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time of writing this introduction).

  4. 4.

    References include (Der Kiureghian et al. 1997; Geyskens et al. 1998; Der Kiureghian 2001b; Sasani and Der Kiureghian 2001; Cetin et al. 2002, 2004; Sasani et al. 2002; Gardoni et al. 2002; Gardoni et al. 2003; Takahashi et al. 2004, Moss et al. 2006; Straub and Der Kiureghian 2008, 2010a, b; Der Kiureghian 2008; Der Kiureghian and Ditlevsen 2009; Bensi et al. 2011, 2013; Kayen et al. 2013) (These references are taken from http://faculty.ce.berkeley.edu/adk/ accessed at the time of writing this introduction).

References

  • Alibrandi U, Der Kiureghian A (2012) A gradient-free method for determining the design point in nonlinear stochastic dynamic analysis. Probab Eng Mech 28:2–10

    Article  Google Scholar 

  • Ambartzumian RV, Der Kiureghian A, Oganian VK, Sukiasian HS, Aramian RH (1996) Poisson random planes model in tunnel building. J Contemp Math Anal Armen (Academy of Sciences, (Izvestiya Nationalnoi Akademmi Nauk Armenii, Matematika), Allerton Press, New York, NY, 31(2): 1–20)

    Google Scholar 

  • Ambartzumian RV, Der Kiureghian A, Ohanian VK, Sukiasian HS (1998) Multinormal probability by sequential conditioned importance sampling: theory and application. Probab Eng Mech 13(4):299–308

    Article  Google Scholar 

  • Ang AH-S, Tang W-H (2007) Probability concepts in engineering: emphasis on applications to civil and environmental engineering. Wiley, New York

    Google Scholar 

  • Asfura A, Der Kiureghian A (1986) Floor response spectrum method for seismic analysis of multiply supported secondary systems. Earthq Engrg Struct Dyn 14(2):245–265

    Article  Google Scholar 

  • Au SK, Beck JL (2001) Estimation of small failure probabilities in high dimensions by subset simulation. Probab Eng Mech 16(4):263–277

    Article  Google Scholar 

  • Augusti G, Baratta A, Casciati F (1984) Probabilistic methods in structural mechanics. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Ayyub BM, McCuen RH (2011) Probability, statistics, and reliability for engineers and scientists. CRC Press

    Google Scholar 

  • Bai J-W, Hueste MBD, Gardoni P (2009) Probabilistic assessment of structural damage due earthquakes for buildings in Mid-America. ASCE J Struct Eng 135(10):1155–1163

    Article  Google Scholar 

  • Bai J-W, Gardoni P, Hueste MBD (2011) Story-specific demand models and seismic fragility estimates for multi-story buildings. Struct Saf 33(1):96–107

    Article  Google Scholar 

  • Bai J-W, Hueste MBD, Gardoni P (2015) Seismic vulnerability assessment of tilt-up concrete structures. Struct Infrastruct Eng 11(9):1131–1146

    Article  Google Scholar 

  • Bayraktarli YY, Baker JW, Faber MH (2011) Uncertainty treatment in earthquake modeling using Bayesian probabilistic networks. GeoRisk 5(1):44–58

    Google Scholar 

  • Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124(4):455–461

    Article  Google Scholar 

  • Bedford T, Cooke R (2001) Probabilistic risk analysis: foundations and methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Benjamin JR, Cornell CA (1970) Probability, statistics and decision for civil engineers. McGraw-Hill, New York

    Google Scholar 

  • Bensi M, Der Kiureghian A, Straub D (2011) Bayesian network modeling of correlated random variables drawn from a Gaussian random field. Struct Saf 33:317–332

    Article  Google Scholar 

  • Bensi M, Der Kiureghian A, Straub D (2013) Efficient Bayesian network modeling of systems. Reliab Eng Syst Saf 112:200–213

    Article  Google Scholar 

  • Biondini F, Bontempi F, Frangopol DM, Malerba PG (2006) Probabilistic service life assessment and maintenance planning of concrete structures. J Struct Eng 132(5):810–825

    Article  Google Scholar 

  • Bocchini P, Christou V, Miranda MJ (2016) Correlated maps for regional multi-hazard analysis: ideas for a novel approach. In: Gardoni P, LaFave J (eds) Multi-hazard approaches to civil infrastructure engineering. Springer International Publishing, pp 15–39

    Google Scholar 

  • Bolduc L, Gardoni P, Briaud J-L (2008) Probability of exceedance estimates for scour depth around bridge piers. J Geo Geoenviron Eng ASCE 134(2):145–265

    Google Scholar 

  • Briaud J-L, Gardoni P, Yao C. (2013) Statistical, risk, and reliability analyses of bridge scour. J Geo Geoenviron Eng ASCE 140(2):04013011  

    Google Scholar 

  • Bucher CG (1988) Adaptive sampling—an iterative fast Monte Carlo procedure. Struct Saf 5(2):119–126

    Article  Google Scholar 

  • Bucher CG, Bourgund U (1990) A fast and efficient response surface approach for structural reliability problems. Struct Saf 7(1):57–66

    Article  Google Scholar 

  • Casciati F, Grigoriu M, Der Kiureghian A, Wen Y-K, Vrouwenvelder T (1997) Report of the working group on dynamics. Struct Saf 19(3):271–282

    Article  Google Scholar 

  • Cetin KO, Der Kiureghian A, Seed RB (2002) Probabilistic models for the initiation of seismic soil liquefaction. Struct Saf 24(1):67–82

    Article  Google Scholar 

  • Cetin KO, Seed RB, Der Kiureghian A, Tokimatsu K, Harder LF, Kayen Jr RE, Moss RES (2004) SPT-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotech Geoenviron Eng ASCE 130(12):1314–1340 (Recipient of the ASCE Thomas A. Middlebrooks Award)

    Google Scholar 

  • Cha EJ, Ellingwood BR (2012) Risk-averse decision-making for civil infrastructure exposed to low-probability, high-consequence events. Reliab Eng Syst Saf 104:27–35

    Article  Google Scholar 

  • Choe D, Gardoni P, Rosowsky D (2007) Closed-form fragility estimates, parameter sensitivity and Bayesian updating for RC columns. ASCE J Eng Mech 133(7):833–843

    Article  Google Scholar 

  • Choe D, Gardoni P, Rosowsky D, Haukaas T (2008) Probabilistic capacity models and seismic fragility estimates for RC columns subject to corrosion. Reliab Eng Syst Saf 93(3):383–393

    Article  Google Scholar 

  • Choe D, Gardoni P, Rosowsky D, Haukaas T (2009) Seismic fragility estimates for reinforced concrete bridges subject to corrosion. Struct Saf 31:275–283

    Article  Google Scholar 

  • Choe D, Gardoni P, Rosowsky D (2010) Fragility increment functions for deteriorating reinforced concrete bridge columns. ASCE J Eng Mech 136(8):969–978

    Article  Google Scholar 

  • Choi E, DesRoches R, Nielson B (2004) Seismic fragility of typical bridges in moderate seismic zones. Eng Struct 26(2):187–199

    Article  Google Scholar 

  • Chua KH, Der Kiureghian A, Monismith CL (1992) Stochastic model for pavement design. J Transp Eng ASCE 118(6):769–786

    Google Scholar 

  • Corotis RB (2009) Societal issues in adopting life-cycle concepts within the political system. Struct Infrastruct Eng 5(1):59–65

    Article  Google Scholar 

  • Corotis RB, Vanmarcke EH, Cornell AC (1972) First passage of nonstationary random processes. J Eng Mech Div 98(2):401–414

    Google Scholar 

  • Corr DJ, Monteiro PJM, Kurtis KE, Der Kiureghian A (2001) Sulfate attack of concrete: reliability analysis. ACI Mater J 98(2):99–104

    Google Scholar 

  • Deodatis G (1996) Simulation of ergodic multivariate stochastic processes. J Eng Mech 122(8):778–787

    Article  Google Scholar 

  • Der Kiureghian A (1978) Second-moment combination of stochastic loads. J Struct Div ASCE 104(10):1551–1567

    Google Scholar 

  • Der Kiureghian A (1980a) Reliability analysis under stochastic loads. J Struct Div ASCE 106(2):411–429

    Google Scholar 

  • Der Kiureghian A (1980b) Structural response to stationary excitation. J Eng Mech Div ASCE 106(6):1195–1213

    Google Scholar 

  • Der Kiureghian A (1981) A response spectrum method for random vibration analysis of MDF systems. Earthq Eng Struct Dyn 9(5):419–435

    Article  Google Scholar 

  • Der Kiureghian A (1983) Seismic risk analysis of structural systems. J Eng Mech Div ASCE 107(6):1133–1153 (Summary translation into Japanese in Proceedings of Japan Society of Civil Engineers, 1983, p 85)

    Google Scholar 

  • Der Kiureghian A (1989a) Measures of structural safety under imperfect states of knowledge. J Struct Engrg ASCE 115(5):1119–1140

    Google Scholar 

  • Der Kiureghian A (1989b) Strong motion records. Earthq Spectra (special supplement on Armenian Earthquake of December 7, 1988, 43–53)

    Google Scholar 

  • Der Kiureghian A (1996a) A coherency model for spatially varying ground motions. Earthq Eng Struct Dyn 25(1):99–111

    Article  Google Scholar 

  • Der Kiureghian A (1996b) Structural reliability methods in seismic safety assessment: a review. J Eng Struct 18(6):412–424

    Article  Google Scholar 

  • Der Kiureghian A (2000) The geometry of random vibrations and solutions by FORM and SORM. Probab Eng Mech 15(1):81–90

    Article  Google Scholar 

  • Der Kiureghian A (2001a) Risk assessment of satellite launch with reusable launch vehicle. J Reliab Eng Syst Saf 74(3):353–360

    Article  Google Scholar 

  • Der Kiureghian A (2001b) Analysis of structural reliability under model and statistical uncertainties: a Bayesian approach. Comput Struct Eng 1(2):81–87

    Google Scholar 

  • Der Kiureghian A (2005) Non-ergodicity and PEER’s framework formula. Earthq Eng Struct Dyn 34:1643–1652

    Article  Google Scholar 

  • Der Kiureghian A (2007) Preface to special issue on earthquake engineering for electric power equipment and lifeline systems. Earthq Eng Struct Dyn 36:163–165

    Article  Google Scholar 

  • Der Kiureghian A (2008) Analysis of structural reliability under parameter uncertainties. Probab Eng Mech 23:351–358

    Article  Google Scholar 

  • Der Kiureghian A (2009) The life and art of Sumbat. ADK & Associates Publishers, San Francisco

    Google Scholar 

  • Der Kiureghian A, Ang AH-S (1977) A fault-rupture model for seismic risk analysis. Bull Seism Soc Am 67(4):1173–1194 (Translated into Chinese in Earthquake Engineering Abroad, 4, 1981, Institute of Engineering Mechanics, Chinese Academy of Sciences, Harbin, China, 20–34)

    Google Scholar 

  • Der Kiureghian A, Crempien J (1989) An evolutionary model for earthquake ground motion. Struct Saf 6(2–4):235–246

    Article  Google Scholar 

  • Der Kiureghian A, Dakessian T (1998) Multiple design points in first and second-order reliability. Struct Saf 20(1):37–49

    Article  Google Scholar 

  • Der Kiureghian A, DeStefano M (1991) Efficient algorithm for second-order reliability analysis. J Engrg Mech ASCE 117(12):2904–2923

    Google Scholar 

  • Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31:105–112

    Article  Google Scholar 

  • Der Kiureghian A, Fujimura K (2009) Nonlinear stochastic dynamic analysis for performance-based earthquake engineering. Earthq Eng Struct Dyn 38:719–738

    Article  Google Scholar 

  • Der Kiureghian A, Ke J-B (1988) The stochastic finite element method in structural reliability. Probab Eng Mech 3(2):83–91

    Article  Google Scholar 

  • Der Kiureghian A, Liu P-L (1986) Structural reliability under incomplete probability information. J Eng Mech ASCE 112(1):85–104

    Google Scholar 

  • Der Kiureghian A, Moghtaderi-Zadeh M (1982) An integrated approach to the reliability of engineering systems. Nucl Engrg Des 71:349–354

    Article  Google Scholar 

  • Der Kiureghian A, Nakamura Y (1993) CQC modal combination rule for high-frequency modes. Earthq Eng Struct Dyn 22(11):943–956

    Article  Google Scholar 

  • Der Kiureghian A, Neuenhofer A (1992) Response spectrum method for multiple-support seismic excitation. Earthq Engrg Struct Dyn 21(8):713–740

    Article  Google Scholar 

  • Der Kiureghian A, Sackman JL (2005) Tangent geometric stiffness of inclined cables under self weight. J Struct Eng ASCE 131(6):941–945

    Google Scholar 

  • Der Kiureghian A, Song J (2008) Multi-scale reliability analysis and updating of complex systems by use of linear programming. Reliab Eng Syst Saf 93:288–297

    Article  Google Scholar 

  • Der Kiureghian A, Wung C-D (1992) A computer-assisted learning system for random vibrations. Comput Struct 43(5):975–993

    Article  MATH  Google Scholar 

  • Der Kiureghian A, Zhang Y (1999) Space-variant finite element reliability analysis. Comput Methods Appl Mech Engrg 168(1–4):173–183

    Article  MATH  Google Scholar 

  • Der Kiureghian A, Sackman JL, Nour-Omid B (1983) Dynamic analysis of light equipment in structures: response to stochastic input. J Eng Mech ASCE 109(1):90–110

    Google Scholar 

  • Der Kiureghian A, Lin H-Z, Hwang S-J (1987) Second-order reliability approximations. J Engrg Mech ASCE 113(8):1208–1225

    Google Scholar 

  • Der Kiureghian A, Zhang Y, Li C-C (1994) Inverse reliability problem. J Eng Mech ASCE 120(5):1154–1159

    Google Scholar 

  • Der Kiureghian A, Geyskens PV, Khalessi M (1997) Probabilistic assessment of debris impact damage on orbital structures. Int J Impact Eng 19(7):571–588

    Article  Google Scholar 

  • Der Kiureghian A, Sackman JL, Hong K-J (2001) Seismic interaction in linearly connected electrical substation equipment. Earthq Eng Struct Dyn 30:327–347

    Article  Google Scholar 

  • Der Kiureghian A, Haukaas T, Fujimura K (2006) Structural reliability software at the University of California, Berkeley. Struct Saf 28(1–2):44–67

    Article  Google Scholar 

  • Der Kiureghian A, Ditlevsen O, Song J (2007) Availability, reliability and downtime of systems with repairable components. Reliab Eng Syst Saf 92:231–242

    Article  Google Scholar 

  • Ditlevsen O (1981) Uncertainty modeling. McGraw-Hill, New York

    MATH  Google Scholar 

  • Ditlevsen O, Madsen HO (1996) Structural reliability methods. Wiley, New York

    Google Scholar 

  • Elhami Khorasani N, Garlock M, Gardoni P (2016) Probabilistic performance-based evaluation of a tall steel moment resisting frame under post-earthquake fires. J Struct Fire Eng 7(3):193–216

    Article  Google Scholar 

  • Ellingwood B (1980) Development of a probability based load criterion for American National Standard A58: building code requirements for minimum design loads in buildings and other structures, vol 13. US Department of Commerce, National Bureau of Standards

    Google Scholar 

  • Ellingwood BR, Mori Y (1993) Probabilistic methods for condition assessment and life prediction of concrete structures in nuclear power plants. Nucl Eng Des 142(2–3):155–166

    Article  Google Scholar 

  • Franchin P, Ditlevsen O, Der Kiureghian A (2002) Model correction factor method for reliability problems involving integrals of non-Gaussian random fields. Probab Eng Mech 17(2):109–122

    Article  Google Scholar 

  • Fujimura K, Der Kiureghian A (2007) Tail-equivalent linearization method for nonlinear random vibration. Probab Eng Mech 22:63–76

    Article  Google Scholar 

  • Gardoni P, LaFave J (2016) Multi-hazard approaches to civil infrastructure engineering. Springer

    Google Scholar 

  • Gardoni P, Murphy C (2008) Recovery from natural and man-made disasters as capabilities restoration and enhancement. Int J Sustain Dev Plan 3(4):1–17

    Google Scholar 

  • Gardoni P, Murphy C (2014) A scale of risk. Risk Analysis 34(7):1208–1227

    Article  Google Scholar 

  • Gardoni P, Der Kiureghian A, Mosalam K (2002) Probabilistic capacity models and fragility estimates for RC columns based on experimental observations. J Eng Mech ASCE 128(10):1024–1038

    Article  Google Scholar 

  • Gardoni P, Mosalam K, Der Kiureghian A (2003) Probabilistic seismic demand models and fragility estimates for RC bridges. J Earthq Eng 7(S1):79–106

    Google Scholar 

  • Gardoni P, Reinschmidt KF, Kumar R (2007) A probabilistic framework for Bayesian adaptive forecasting of project progress. Comput-Aided Civil Infrastruct Eng 22(3):182–196

    Article  Google Scholar 

  • Gardoni P, Trejo D, Vannucci M, Bhattacharjee C (2009) Probabilistic models for modulus of elasticity of self-consolidated concrete: a Bayesian approach. ASCE J Eng Mech 135(4):295–306

    Article  Google Scholar 

  • Gardoni P, Murphy M, Rowell A (2016) Risk analysis of natural hazards. Springer

    Google Scholar 

  • Gardoni P, Guevara-Lopez F, Contento A (2016b) The Life Profitability Method (LPM): a financial approach to engineering decisions. Struct Saf 63:11–20

    Article  Google Scholar 

  • Garrè L, Der Kiureghian A (2010) Tail-equivalent linearization method in frequency domain and application to marine structures. Marine Struct 23:322–338

    Article  Google Scholar 

  • Geyskens PhV, Der Kiureghian A, Monteiro P (1998) Bayesian prediction of elastic modulus of concrete. J Struct Eng ASCE 124(1):89–95

    Google Scholar 

  • Giuliani L, Revez A, Sparf J, Jayasena S, Havbro Faber M (2016) Social and technological aspects of disaster resilience. Int J Strat Property Manag 20(3):277–290

    Article  Google Scholar 

  • Guidotti R, Chmielewski H, Unnikrishnan V, Gardoni P, McAllister T, van de Lindt JW (2016) modeling the resilience of critical infrastructure: the role of network dependencies. Sustain Resil Infrastruct 1(3–4):153–168

    Google Scholar 

  • Guidotti R, Gardoni P, Chen Y (2017) Network reliability analysis with link and nodal weights and auxiliary nodes. Struct Saf 65:12–26

    Google Scholar 

  • Guikema S, Gardoni P (2009) Reliability estimation for networks of reinforced concrete bridges. ASCE J Infrastruct Syst 15(2):61–69

    Article  Google Scholar 

  • Gurley KR, Kareem A, Tognarelli MA (1996) Simulation of a class of non-normal random processes. Int J Non-Linear Mech 31(5):601–617

    Article  MATH  Google Scholar 

  • Haimes YY (2004) Risk modeling, assessment, and management, 2nd edn. Wiley Series in Systems Engineering and Management, Hoboken

    Book  MATH  Google Scholar 

  • Hart GC (1982) Uncertainty analysis, loads, and safety in structural engineering. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Haukaas T, Der Kiureghian A (2005) Parameter sensitivity and importance measures in nonlinear finite element reliability analysis. J Eng Mech ASCE 131(10):1013–1026

    Google Scholar 

  • Haukaas T, Der Kiureghian A (2006) Strategies for finding the design point in nonlinear finite element reliability analysis. Probab Eng Mech 21:133–147

    Article  Google Scholar 

  • Haukaas T, Der Kiureghian A (2007) Methods and object-oriented software for FE reliability and sensitivity analysis with application to a bridge structure. J Comput Civil Eng ASCE 21(3):151–163

    Google Scholar 

  • Hong K-J, Der Kiureghian A, Sackman JL (2001) Seismic interaction in cable-connected equipment items. J Eng Mech ASCE 127(11):1096–1105

    Google Scholar 

  • Hong K-J, Der Kiureghian A, Sackman JL (2005) Bending behavior of hellically wrapped cables. J Eng Mech ASCE 131(5):500–511 (Discussion and Closure, 132(7): 790–792)

    Google Scholar 

  • Huang Q, Gardoni P, Hurlebaus S (2009) Probabilistic capacity models and fragility estimates for reinforced concrete columns Incorporating NDT data. ASCE J Eng Mech 135(12):1384–1392

    Article  Google Scholar 

  • Huang Q, Gardoni P, Hurlebaus S (2012) A probabilistic damage detection approach using vibration-based nondestructive testing. Struct Saf 38(2012):11–21

    Article  Google Scholar 

  • Huang Q, Gardoni P, Hurlebaus S (2015a) Assessment of modal parameters considering measurement and modeling errors. J Smart Struct Syst 15(3):717–733

    Article  Google Scholar 

  • Huang Q, Gardoni P, Hurlebaus S (2015b) Adaptive reliability analysis of reinforced concrete bridges subject to seismic loading using nondestructive testing. ASCE-ASME J Risk Uncertain Eng Syst Part A: Civil Eng 1(4):04015014

    Article  Google Scholar 

  • Igusa T, Der Kiureghian A (1985a) Dynamic characterization of two degree-of-freedom equipment-structure systems. J Eng Mech ASCE 111(1):1–19

    Google Scholar 

  • Igusa T, Der Kiureghian A (1985b) Dynamic response of multiply supported secondary systems. J Eng Mech ASCE 111(1):20–41

    Google Scholar 

  • Igusa T, Der Kiureghian A (1985c) Generation of floor response spectra including oscillator-structure interaction. Earthq Eng Struct Dyn 13(5):661–676

    Article  Google Scholar 

  • Igusa T, Der Kiureghian A (1988a) Response of uncertain systems to stochastic excitation. J Engrg Mech ASCE 114(5):812–832

    Google Scholar 

  • Igusa T, Der Kiureghian A (1988b) Dynamic response of tertiary subsystems. J Engrg Mech ASCE 114(8):1375–1395

    Google Scholar 

  • Igusa T, Der Kiureghian A (1992) Interaction in primary-secondary systems. J Press Vessel Tech ASME 114(1):53–59

    Google Scholar 

  • Igusa T, Der Kiureghian A, Sackman JL (1984) Modal decomposition method for stationary response of non-classically damped systems. Earthq Engrg Struct Dyn 12(1):121–136

    Article  Google Scholar 

  • Jang Y-S, Sitar N, Der Kiureghian A (1994) Reliability analysis of contaminant transport in saturated porous media. Water Resour Res 30(8):2435–2448

    Article  Google Scholar 

  • Jayaram N, Baker JW (2010) Considering spatial correlation in mixed-effects regression, and impact on ground-motion models. Bull Seismol Soc Am 100(6):3295–3303

    Article  Google Scholar 

  • Kang W-H, Song J, Gardoni P (2008) Matrix-based system reliability method and applications to bridge networks. Reliab Eng Syst Saf 93:1584–1593

    Article  Google Scholar 

  • Kaplan S, Gerrick BJ (1981) On the quantitative definition of risk. Risk Analysis 1:11–27

    Article  Google Scholar 

  • Kareem A, Gurley K (1996) Damping in structures: its evaluation and treatment of uncertainty. J Wind Eng Ind Aerodyn 59(2):131–157

    Article  Google Scholar 

  • Kayen R, Moss R, Thompson EM, Seed R, Cetin OK, Der Kiureghian A, Tanaka Y, Tokimatsu K (2013) Shear wave velocity-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J Geotechn Geoenviron Eng ASCE 139(3):407–419

    Google Scholar 

  • Khachian E, Der Kiureghian A, Tonoyan A (1998) Dynamic properties of primary-secondary systems. J Struct Eng Assoc Yerevan Armen 7(24):1–4 (in Armenian)

    Google Scholar 

  • Kiremidjian AS, Stergiou E, Lee R (2007) Issues in seismic risk assessment of transportation networks. In: Earthquake geotechnical engineering. Springer, The Netherlands, pp 461–480

    Google Scholar 

  • Kirjner-Neto C, Polak E, Der Kiureghian A (1998) An outer approximations approach to reliability-based optimal design of structures. J Optim Theory Appl 98(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Konakli K, Der Kiureghian A (2011) Extended MSRS rule for seismic analysis of bridges subjected to differential support motions. Earthq Eng Struct Dyn 40(12):1315–1335

    Article  Google Scholar 

  • Konakli K, Der Kiureghian A (2012) Simulation of spatially varying ground motions including incoherence, wave-passage and differential site-response effects. Earthq Eng Struct Dyn 41:495–513

    Article  Google Scholar 

  • Konakli K, Der Kiureghian A (2014) The ‘equal displacement’ approximation for bridges subjected to differential support motions. Earthq Eng Struct Dyn 43(1):23–39

    Article  Google Scholar 

  • Konakli K, Der Kiureghian A, Dreger D (2014) Coherency analysis of accelerograms recorded by the UPSAR array during the 2004 Parkfield Earthquake. Earthq Eng Struct Dyn 43(5):641–659

    Article  Google Scholar 

  • Kong S, Fragopol DM (2003) Evaluation of expected life-cycle maintenance cost of deteriorating structures. J Struct Eng 129(5):682–691

    Article  Google Scholar 

  • Koo H, Der Kiureghian A, Fujimura K (2005) Design-point excitation for nonlinear random vibrations. Probab Eng Mech 20:136–147

    Article  Google Scholar 

  • Kostandyan E, Sørensen J (2014) Dependent systems reliability estimation by structural reliability approach. Int J Perform Eng 10(6):605–614

    Google Scholar 

  • Kumar R, Gardoni P (2014) Renewal theory-based life-cycle analysis of deteriorating engineering systems. Struct Saf 50:94–102

    Article  Google Scholar 

  • Kumar R, Gardoni P, Sanchez-Silva M (2009) Effect of cumulative seismic damage and corrosion on life-cycle cost of reinforced concrete bridges. Earthq Eng Struct Dyn 38(7):887–905

    Article  Google Scholar 

  • Kumar R, Cline D, Gardoni P (2015) A stochastic framework to model deterioration in engineering systems. Struct Saf 53:36–43

    Article  Google Scholar 

  • Kwon OS, Elnashai A (2006) The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure. Eng Struct 28(2):289–303

    Article  Google Scholar 

  • Lee Y-J, Song J, Gardoni P, Lim H-W (2011) Post-hazard flow capacity of bridge transportation networks considering structural deterioration of bridges. Struct Infrastruct Eng 7(7):509–521

    Article  Google Scholar 

  • Li J, Chen JB (2004) Probability density evolution method for dynamic response analysis of structures with uncertain parameters. Comput Mech 34(5):400–409

    Article  MATH  Google Scholar 

  • Li C-C, Der Kiureghian A (1993) Optimal discretization of random fields. J Eng Mech ASCE 119(6):1136–1154

    Google Scholar 

  • Lin YK, Kozin F, Wen YK, Casciati F, Schueller GI, Der Kiureghian A, Ditlevsen O, Vanmarcke EH (1986) Methods of stochastic structural dynamics. Struct Saf 3(3+4):167–194

    Google Scholar 

  • Lin P, Wang N, Ellingwood BR (2016) A risk de-aggregation framework that relates community resilience goals to building performance objectives. Sustain Resil Infrastruct 1(1–2):1–13

    Google Scholar 

  • Lind N, Nathwani J (2012) LQI bibliography and abstracts. LQI symposium in Kgs. Lyngby, Denmark August 21–23

    Google Scholar 

  • Liu P-L, Der Kiureghian A (1986) Multivariate distribution models with prescribed marginals and covariances. Probab Eng Mech 1(2):105–112

    Article  Google Scholar 

  • Liu P-L, Der Kiureghian A (1991a) Finite element reliability of geometrically nonlinear uncertain structures. J Engrg Mech ASCE 117(8):1806–1825

    Google Scholar 

  • Liu P-L, Der Kiureghian A (1991b) Optimization algorithms for structural reliability. Struct Saf 9(3):161–177

    Article  Google Scholar 

  • Liu K, Paulino G, Gardoni P (2016a) Reliability-based topology optimization using a new method for sensitivity approximation—application to ground structures. J Struct Multidiscip Optim 54(3):553–571

    Article  MathSciNet  Google Scholar 

  • Liu K, Paulino G, Gardoni P (2016b) Segmental multi-point linearization for parameter sensitivity approximation in reliability analysis. Struct Saf 62:101–115

    Article  Google Scholar 

  • Lutes L, Sarkani S (2004) Random vibrations: analysis of structural and mechanical systems. Elsevier Butterworth-Heinemann, Burlington, Mass

    Google Scholar 

  • Madsen HO, Krenk S, Lind NC (1986) Methods of structural theory and its applications. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Maes MA, Faber MH (2007) Preferences, utility and risk perception in engineering decision making. Int J Risk Assess Manag 7(6/7):813–827

    Article  Google Scholar 

  • Mahmoud H, Chulahwat A (2016) Multi-hazard multi-objective optimization of building systems with isolated floors under seismic and wind demands. In: Gardoni P, LaFave J (eds) Multi-hazard approaches to civil infrastructure engineering. Springer International Publishing, pp 141–164

    Google Scholar 

  • Mardfekri M, Gardoni P (2015) Multi-hazard reliability assessment of offshore wind turbines. Wind Energy 18(8):1433–1450

    Article  Google Scholar 

  • Mardfekri M, Gardoni P, Bisadi V (2015) Service reliability of offshore wind turbines. Int J Sustain Energ 34(7):468–484

    Article  Google Scholar 

  • Mathakari S, Gardoni P, Agarwal P, Raich A, Haukaas T (2007) Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms. Comput-Aided Civil Infrastruct Eng 22(4):282–292

    Article  Google Scholar 

  • Melchers RE (1999) Structural reliability: analysis and prediction, 2nd edn. Wiley, New York

    Google Scholar 

  • Melchers RE (2005) The effect of corrosion on the structural reliability of steel offshore structures. Corros Sci 47(10):2391–2410

    Article  Google Scholar 

  • Menun C, Der Kiureghian A (1998) A replacement for the 30%, 40% and SRSS rules for multi-component seismic analysis. Earthq Spectra 14(1):153–163

    Article  Google Scholar 

  • Menun C, Der Kiureghian A (2000a) Envelopes for seismic response interaction part I: theory. J Struct Eng ASCE 126(4):467–473

    Google Scholar 

  • Menun C, Der Kiureghian A (2000b) Envelopes for seismic response interaction part II: application. J Struct Eng ASCE 126(4):474–481

    Google Scholar 

  • Moan T (2005) Reliability-based management of inspection, maintenance and repair of offshore structures. Struct Infrastruct Eng 1(1):33–62

    Article  Google Scholar 

  • Moghtaderi-Zadeh M, Der Kiureghian A (1983) Reliability upgrading of lifeline networks for post-earthquake serviceability. Earthq Engrg Struct Dyn 11(4):557–566

    Article  Google Scholar 

  • Moghtaderi-Zadeh M, Wood K, Der Kiureghian A, Barlow RE (1982) Seismic reliability of lifeline networks. J Tech Councils ASCE 108(1): 60–78

    Google Scholar 

  • Moss RES, Seed RB, Kayen RE, Stewart JP, Der Kiureghian A, Cetin KO (2006) CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential. J Geotech Geoenviron Eng ASCE 132:1032–1051

    Article  Google Scholar 

  • Mousavi ME, Gardoni P (2014a) Integrity index and integrity-based optimal design of structural systems. Eng Struct 60(2014):206–213

    Article  Google Scholar 

  • Mousavi ME, Gardoni P (2014b) A simplified method for reliability- and integrity-based design of engineering systems and its application to offshore mooring systems. Marine Struct 36:88–104

    Article  Google Scholar 

  • Mousavi ME, Gardoni P, Maadooliat M (2013) Progressive reliability method and its application to offshore mooring systems. Eng Struct 56:2131–2138

    Article  Google Scholar 

  • Murphy C, Gardoni P (2006) The role of society in engineering risk analysis: a capabilities-based approach. Risk Analysis 26(4):1073–1083

    Article  Google Scholar 

  • Murphy C, Gardoni P (2007) Determining public policy and resource allocation priorities for mitigating natural hazards: a capabilities-based approach. Sci Eng Ethics 13(4):489–504

    Article  Google Scholar 

  • Murphy C, Gardoni P (2011) Evaluating the source of the risks associated with natural events. Res Publica 17(2):125–140

    Article  Google Scholar 

  • Murphy C, Gardoni P, Harris CE (2011) Classification and moral evaluation of uncertainties in engineering modeling. Sci Eng Ethics 17(3):553–570

    Article  Google Scholar 

  • Narasimhan H, Ferlisi S, Cascini L, De Chiara G, Faber MH (2016) A cost-benefit analysis of mitigation options for optimal management of risks posed by flow-like phenomena. Nat Hazards 81(1):117–144

    Article  Google Scholar 

  • Nour-Omid B, Sackman JL, Der Kiureghian A (1983) Modal characterization of equipment-continuous structure systems. J. Sound Vib 88(4):459–472

    Article  MATH  Google Scholar 

  • Nowak AS, Collins KR (2012) Reliability of structures. CRC Press

    Google Scholar 

  • Pachakis D, Kiremidjian AS (2004) Estimation of downtime-related revenue losses in seaports following scenario earthquakes. Earthq Spectra 20(2):427–449

    Article  Google Scholar 

  • Padgett JE, Kameshwar S (2016) Supporting life cycle management of bridges through multi-hazard reliability and risk assessment. In: Gardoni P, LaFave J (eds) Multi-hazard approaches to civil infrastructure engineering. Springer International Publishing, pp 41–58

    Google Scholar 

  • Phoon KK (ed) (2008) Reliability-based design in geotechnical engineering: computations and applications. CRC Press

    Google Scholar 

  • Pilkington SF, Mahmoud HN (2016) Using artificial neural networks to forecast economic impact of multi-hazard hurricane-based events. Sustain Resil Infrastruct 1(1–2):63–83

    Article  Google Scholar 

  • Pillai RG, Hueste MD, Gardoni P, Trejo D, Reinschmidt KF (2010) Time-variant service reliability of post-tensioned, segmental, concrete bridges exposed to corrosive environments. Eng Struct 32(9):2596–2605

    Article  Google Scholar 

  • Pillai RG, Trejo D, Gardoni P, Hueste MB, Reinschmidt KF (2014) Time-variant flexural reliability of post-tensioned, segmental concrete bridges exposed to corrosive environments. ASCE J Struct Eng 140(8):A4014018

    Article  Google Scholar 

  • Ramamoorthy KS, Gardoni P, Bracci MJ (2006) Probabilistic demand models and fragility curves for reinforced concrete frames. ASCE J Struct Eng 132(10):1563–1572

    Article  Google Scholar 

  • Ramamoorthy KS, Gardoni P, Bracci MJ (2008) Seismic fragility and confidence bounds for gravity load designed reinforced concrete frames of varying height. ASCE J Struct Eng 134(4):639–650

    Article  Google Scholar 

  • Rezaeian S, Der Kiureghian A (2008) A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthq Eng Struct Dyn 37:1565–1584

    Article  Google Scholar 

  • Rezaeian S, Der Kiureghian A (2010) Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthq Eng Struct Dyn 39:1155–1180. doi:10.1002/eqe.997

    Google Scholar 

  • Rezaeian S, Der Kiureghian A (2012) Simulation of orthogonal horizontal ground motion components for specified earthquake and site characteristics. Earthq Eng Struct Dyn 41:335–353

    Article  Google Scholar 

  • Roberts JB, Spanos PD (2003) Random vibration and statistical linearization. Courier Corporation

    Google Scholar 

  • Rosowsky DV, Ellingwood BR (2002) Performance-based engineering of wood frame housing: fragility analysis methodology. J Struct Eng 128(1):32–38

    Article  Google Scholar 

  • Rossetto T, Elnashai A (2003) Derivation of vulnerability functions for European-type RC structures based on observational data. Eng Struct 25(10):1241–1263

    Article  Google Scholar 

  • Rowe WD (1980) Risk assessment: theoretical approaches and methodological problems. In: Conrad J (ed) Society, technology, and risk assessment. Academic Press, New York, pp 3–29

    Google Scholar 

  • Royset J, Der Kiureghian A, Polak E (2001a) Reliability-based optimal design of series structural systems. J Eng Mech ASCE 127(6):607–614

    Google Scholar 

  • Royset J, Der Kiureghian A, Polak E (2001b) Reliability-based optimal structural design by the decoupling approach. Reliab Eng Syst Safty 73(3):213–221

    Article  Google Scholar 

  • Royset JO, Polak E, Der Kiureghian A (2003) Adaptive approximations and exact penalization for the solution of generalized semi-infinite min-max problems. SIAM J Optim 14(1):1–34

    Article  MathSciNet  MATH  Google Scholar 

  • Royset JO, Der Kiureghian A, Polak E (2006) Optimal design with probabilistic objective and constraints. J Eng Mech ASCE 132(1):107–118

    Google Scholar 

  • Sackman JL, Der Kiureghian A, Nour-Omid B (1983) Dynamic analysis of light equipment in structures: modal properties of the combined system. J Eng Mech ASCE 109(1): 73–89

    Google Scholar 

  • Sasani M, Der Kiureghian A (2001) Seismic fragility of reinforced concrete structural walls: a displacement approach. J Struct Eng ASCE 127(2):219–228

    Google Scholar 

  • Sasani M, Der Kiureghian A, Bertero VV (2002) Seismic fragility of short period reinforced concrete structural walls under near-source ground motions. Struct Saf 24(2–4):123–138

    Article  Google Scholar 

  • Schevenels M, Lazarov B, Sigmund O (2011) Robust topology optimization accounting for spatially varying manufacturing errors. Comput Methods Appl Mech Eng 200(4952):3613–3627

    Article  MATH  Google Scholar 

  • Schüeller G, Jensen H (2008) Computational methods in optimization considering uncertainties: an overview. Comput Methods Appl Mech Eng 198(1):2–13

    Article  MATH  Google Scholar 

  • Shinozuka M (1971) Simulation of multivariate and multidimensional random processes. J Acoust Soc Am 49(1B):357–368

    Article  Google Scholar 

  • Shinozuka M, Deodatis G (1991) Simulation of stochastic processes by spectral representation. Appl Mech Rev 44(4):191–204

    Article  MathSciNet  Google Scholar 

  • Sitar N, Cawlfield JD, Der Kiureghian A (1987) First-order reliability approach to stochastic analysis of subsurface flow and contaminant transport. Water Resour Res 23(5):794–804

    Article  Google Scholar 

  • Smeby W, Der Kiureghian A (1985) Modal combination rules for multi-component earthquake excitation. Earthq Engrg Struct Dyn 13(1):1–12

    Article  Google Scholar 

  • Somerville PG, McLaran JP, Sen MK, Helmberge DV (1991) The influence of site conditions on the spatial in coherence of ground motions. Struct Saf 10(1):1–14

    Article  Google Scholar 

  • Song J, Der Kiureghian A (2003) Bounds on system reliability by linear programming. J Eng Mech ASCE 129(6):627–636

    Google Scholar 

  • Song J, Der Kiureghian A (2006a) Joint first-passage probability and reliability of systems under stochastic excitation. J Eng Mech ASCE 132(1):65–77

    Google Scholar 

  • Song J, Der Kiureghian A (2006b) Generalized Bouc-Wen model for highly asymmetric hysteresis. J Eng Mech ASCE 132:610–618 (Discussion and closure, 134:438–439, May 2008)

    Google Scholar 

  • Song J, Der Kiureghian A, Sackman JL (2007) Seismic interaction in electrical substation equipment connected by nonlinear rigid bus conductors. Earthq Eng Struct Dyn 36:167–190

    Article  Google Scholar 

  • Stewart MG, Reid S (2016) Decision-making in a changing climate. Struct Infrastruct Eng 12(4):431

    Article  Google Scholar 

  • Stewart MG, Rosowsky DV (1998) Time-dependent reliability of deteriorating reinforced concrete bridge decks. Struct Saf 20(1):91–109

    Article  Google Scholar 

  • Straub D, Der Kiureghian A (2008) Improved seismic fragility modeling from empirical data. Struct Saf 30:320–336

    Article  Google Scholar 

  • Straub D, Der Kiureghian A (2010a) Bayesian network enhanced with structural reliability methods: methodology. J Eng Mech ASCE 136(10):1248–1258

    Article  Google Scholar 

  • Straub D, Der Kiureghian A (2010b) Bayesian network enhanced with structural reliability methods: application. J Eng Mech ASCE 136(10):1259–1270

    Article  Google Scholar 

  • Straub D, Der Kiureghian A (2011) Reliability acceptance criteria for deteriorating elements of structural systems. J Struct Eng ASCE 137:1573–1582

    Article  Google Scholar 

  • Streicher H, Rackwitz R (2004) Time-variant reliability-oriented structural optimization and a renewal model for life-cycle costing. Probab Eng Mech 19(1–2):171–183

    Article  Google Scholar 

  • Sudret B, Der Kiureghian A (2002) Comparison of finite element reliability methods. Probab Eng Mech 17(4):337–348

    Article  Google Scholar 

  • Swain AD, Guttmann HE (1983) Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report (No. NUREG/CR-1278; SAND-80–0200). Sandia National Labs, Albuquerque, NM (USA)

    Google Scholar 

  • Tabandeh A, Gardoni P (2015) “Empirical Bayes approach for developing hierarchical probabilistic predictive models and its application to the seismic reliability analysis of FRP-retrofitted RC bridges. ASCE-ASME J Risk Uncertain Eng Syst Part A: Civil Eng 1(2):04015002

    Article  Google Scholar 

  • Taflanidis AA, Beck JL (2008) An efficient framework for optimal robust stochastic system design using stochastic simulation. Comput Methods Appl Mech Eng 198(1):88–101

    Article  MATH  Google Scholar 

  • Taflanidis AA, Jia G, Gidaris I (2016) Natural hazard probabilistic risk assessment through surrogate modeling. In: Gardoni P, LaFave J (eds) Multi-hazard approaches to civil infrastructure engineering. Springer International Publishing, pp 59–86

    Google Scholar 

  • Takahashi Y, Der Kiureghian A, Ang AH-S (2004) Life-cycle cost analysis based on a renewal model of earthquake occurrences. Earthq Eng Struct Dyn 33(7):859–880

    Article  Google Scholar 

  • Taniguchi T, Der Kiureghian A, Melkumyan M (2008) Effect of tuned mass damper on displacement demand of base-isolated structures. Eng Struct 30:3478–3488

    Article  Google Scholar 

  • Thoft-Christense P, Baker M (1982) Structural reliability theory and its applications. Springer, Berlin

    Book  Google Scholar 

  • Thoft-Christense P, Murotsu Y (1986) Applications of structural system reliability theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Val DV, Stewart MG, Melchers RE (2000) Life-cycle performance of RC bridges: probabilistic approach. Comput Aided Civil Infrastruct Eng 15(1):14–25

    Article  Google Scholar 

  • van de Lindt JW (2004) Evolution of wood shear wall testing, modeling, and reliability analysis: bibliography. Pract Period Struct Des Constr 9(1):44–53

    Article  Google Scholar 

  • van de Lindt JW, Walz MA (2003) Development and application of wood shear wall reliability model. J Struct Eng 129(3):405–413

    Article  Google Scholar 

  • Van Noortwijk JM, Frangopol DM (2004) Two probabilistic life-cycle maintenance models for deteriorating civil infrastructures. Probab Eng Mech 19(4):345–359

    Article  Google Scholar 

  • Vanmarcke E (2010) Random fields: analysis and synthesis (1st Edition: The MIT Press, 1983). Second (Revised and Expanded) Edition. World Scientific Publishing Company

    Google Scholar 

  • Vose D (2000) Risk analysis: a quantitative guide. Wiley, New York

    MATH  Google Scholar 

  • Vrouwenvelder T (1997) The JCSS probabilistic model code. Struct Saf 19(3):245–251

    Article  Google Scholar 

  • Wen YK (1990) Structural load modeling and combination for performance and safety evaluation. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  • Williams RJ, Gardoni P, Bracci JM (2009) Decision analysis for seismic retrofit of structures. Struct Saf 31:188–196

    Article  Google Scholar 

  • Wilson EL, Der Kiureghian A, Bayo EP (1981) A replacement for the SRSS method in seismic analysis. Earthq Engrg Struct Dyn 9(2):187–194 (Summary translation into Japanese in Proceedings of Japan Society of Civil Engineers, 1983, p 69)

    Google Scholar 

  • Wirsching PH (1984) Fatigue reliability for offshore structures. J Struct Eng 110(10):2340–2356

    Article  Google Scholar 

  • Xu H, Gardoni P (2016) Probabilistic capacity and seismic demand models and fragility estimates for reinforced concrete buildings based on three-dimensional analyses. Eng Struct 112:200–214

    Article  Google Scholar 

  • Yang TY, Moehle J, Stojadinovic B, Der Kiureghian A (2009) Seismic performance evaluation of facilities: methodology and implementation. J Struct Eng 135(10):1146–1154

    Article  Google Scholar 

  • You T, Gardoni P, Hurlebaus S (2014) Iterative damage index method for structural health monitoring. Strct Mon Maint 1(1):89–110

    Google Scholar 

  • Zhang Y, Der Kiureghian A (1993) Dynamic response sensitivity of inelastic structures. Comp Methods Appl Mech Engrg 108(1):23–36

    Article  MATH  Google Scholar 

  • Zhang Y, Der Kiureghian A (1994) First-excursion probability of uncertain structures. Probab Eng Mech 9(1–2):135–143

    Article  Google Scholar 

  • Zhao J, Wang C (2014) Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices. Comput Methods Appl Mech Eng 273(1):204–218

    Article  MathSciNet  MATH  Google Scholar 

  • Zhong J, Gardoni P, Rosowsky D (2012) Seismic fragility estimates for corroding reinforced concrete bridges. Struct Infrastruct Eng 8(1):55–69

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Gardoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gardoni, P. (2017). Risk and Reliability Analysis. In: Gardoni, P. (eds) Risk and Reliability Analysis: Theory and Applications. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-52425-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52425-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52424-5

  • Online ISBN: 978-3-319-52425-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics