Skip to main content

Friction and Electrostatics

  • Chapter
  • First Online:
Chemical Electrostatics

Abstract

Electrostatic charging is a common outcome of friction but the resulting electrostatic interactions have not been considered in classical theories for contact mechanics such as Johnson-Kendall-Roberts (JKR) and Derjaguin-Muller-Toporov (DMT). On the other hand, tribocharge produced by friction has a strong effect on friction itself, modifying friction coefficients between the intervening surfaces. Friction and tribocharging are also associated with wear phenomena and the interplay between these three important concepts is mediated by tribochemical or mechanochemical reactions. This chapter presents experimental results on the interdependence between triboelectrification and friction coefficients, discussing the insertion of coulombic contributions in the theories for contact mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowden FP, Tabor D (1954) Friction and lubrication. Oxford University Press, Oxford

    Google Scholar 

  2. Hertz H, Reine J (1882) Ueber die Berührung fester elastischer Körper. Angew Math 92:156–171

    Google Scholar 

  3. Adamson AW, Gast AP (1997) Physical chemistry of surfaces. Wiley, New York

    Google Scholar 

  4. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc A Math Phys Eng Sci 324:301–313

    Article  CAS  Google Scholar 

  5. Mate CM (2008) Tribology on the small scale: a bottom up approach to friction, lubrication, and wear. Oxford University Press, Oxford

    Google Scholar 

  6. Derjaguin BV, Muller VM, Toporov YUP (1975) Effect of contact deformation on the adhesion of particles. J Colloid Interf Sci 53:314–326

    Article  CAS  Google Scholar 

  7. Tabor D (1977) Surface forces and surface interactions. J Colloid Interf Sci 58:2–13

    Article  CAS  Google Scholar 

  8. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interf Sci 150:243–269

    Article  CAS  Google Scholar 

  9. Muller VM, Yushchenko VS, Derjaguin BV (1980) On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane. J Colloid Interf Sci 77:91–101

    Article  CAS  Google Scholar 

  10. Shi X, Zhao Y-P (2004) Comparison of various adhesion contact theories and the influence of dimensionless load parameter. J Adhes Sci Technol 18(1):55–68

    Article  CAS  Google Scholar 

  11. Chen YL, Israelachvili JN (1991) Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J Phys Chem 95:10736–10747

    Article  CAS  Google Scholar 

  12. Yoshizawa H, Chen YL, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J Phys Chem 97:4128–4140

    Article  CAS  Google Scholar 

  13. Tabor D (1995) Tribology—the last 25 years. A personal view. Tribol Int 28(1):7–10

    Article  Google Scholar 

  14. Mittal KL (1976) Adhesion aspects of metallization of organic polymer surfaces. J Vac Sci Technol 13:19–25

    Article  CAS  Google Scholar 

  15. Singer IL, Dvorak SD, Wahl KJ, Scharf TW (2003) Role of third bodies in friction and wear of protective coatings. J Vac Sci Technol A 21:232–240

    Article  Google Scholar 

  16. Park JY, Ogletree DF, Thiel PA, Salmeron M (2006) Electronic control of friction in silicon pn junctions. Science 313:186–186

    Article  CAS  Google Scholar 

  17. Park JY, Qi Y, Ogletree DF, Thiel PA, Salmeron M (2007) Influence of carrier density on the friction properties of silicon pn junctions. Phys Rev B 76:064108

    Article  Google Scholar 

  18. Altfeder I, Krim J (2012) Temperature dependence of nanoscale friction for Fe on YBCO. J Appl Phys 111:094916

    Article  Google Scholar 

  19. Krim J (2012) Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv Phys 61:155–323

    Article  CAS  Google Scholar 

  20. Brezoczky B, Seki H (1990) Triboattraction: friction under negative load. Langmuir 6:1141–1145

    Article  CAS  Google Scholar 

  21. Park JY, Salmeron M (2014) Fundamental aspects of energy dissipation in friction. Chem Rev 114:677–711

    Article  CAS  Google Scholar 

  22. Burgo TAL, Rezende CA, Bertazzo S, Galembeck A, Galembeck F (2011) Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation. J Electrostat 69:401–409

    Article  CAS  Google Scholar 

  23. McCarty LS, Whitesides GM (2008) Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed 47:2188–2207

    Article  CAS  Google Scholar 

  24. Matta C, Eryilmaz OL, De Barros Bouchet MI, Erdemir A, Martin JM, Nakayama K (2009) On the possible role of triboplasma in friction and wear of diamond-like carbon films in hydrogen-containing environments. J Phys D Appl Phys 42:075307

    Article  Google Scholar 

  25. Camara CG, Escobar JV, Hird JR, Putterman SJ (2008) Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape. Nature 455:1089–1092

    Article  CAS  Google Scholar 

  26. Budakian R, Putterman SJ (2000) Correlation between charge transfer and stick-slip friction at a metal-insulator interface. Phys Rev Lett 85:1000–1003

    Article  CAS  Google Scholar 

  27. Akbulut M, Godfrey Alig AR, Israelachvili J (2006) Triboelectrification between smooth metal surfaces coated with self-assembled monolayers (SAMs). J Phys Chem B 110(44):22271–22278

    Article  CAS  Google Scholar 

  28. Morris S, Wood RJK, Harvey TJ, Powrie HEG (2003) Electrostatic charge monitoring of unlubricated sliding wear of a bearing steel. Wear 255:430–443

    Article  CAS  Google Scholar 

  29. Seto T (1995) Effects of an electric field on the static friction of a metal on a ferroelectric material. Appl Phys Lett 67:442–443

    Article  CAS  Google Scholar 

  30. Burgo TAL, Ducati TRD, Francisco KR, Clinckspoor KJ, Galembeck F, Galembeck SE (2012) Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28:7407–7416

    Article  CAS  Google Scholar 

  31. Burgo TAL, Silva CA, Balestrin LBS, Galembeck F (2013) Friction coefficient dependence on electrostatic tribocharging. Sci Rep 3:2384

    Article  Google Scholar 

  32. Burgo TAL, Erdemir A (2014) Bipolar tribocharging signal during friction force fluctuations at metal-insulator interfaces. Angew Chem Int Ed 53:12101–12105

    Article  CAS  Google Scholar 

  33. Harper WR (1967) Contact and frictional electrification. Oxford at the Clarendon Press, London

    Google Scholar 

  34. Lowell J, RoseInnes AC (1980) Contact electrification. Adv Phys 29(9):947–1023

    Article  CAS  Google Scholar 

  35. Lacks DJ, Sankaran RM (2011) Contact electrification of insulating materials. J Phys D Appl Phys 44(45):453001

    Article  Google Scholar 

  36. Santos JP, Corpart P, Wong K, Galembeck F (2004) Heterogeneity in styrene- butadiene latex films. Langmuir 20:10576–10582

    Article  CAS  Google Scholar 

  37. Pittenger B, Erina N et al (2012) Quantitative mechanical property mapping at the nanoscale with Peak Force QNM. Bruker Application Note #128, Bruker Nano Surfaces Divison Santa Barbara, USA

    Google Scholar 

  38. Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Yu Shapoval S (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2(7):461–463

    Article  CAS  Google Scholar 

  39. Lacks DJ (2012) The unpredictability of electrostatic charging. Angew Chem Int Ed 51:6822–6823

    Article  CAS  Google Scholar 

  40. Baytekin HT, Patashinski AZ, Branicki M, Baytekin B, Soh S, Grzybowski BA (2011) The mosaic of surface charge in contact electrification. Science 333:308–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Friction and Electrostatics. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_8

Download citation

Publish with us

Policies and ethics