Skip to main content

Excess Charge in Solids: Electrets

  • Chapter
  • First Online:
Chemical Electrostatics

Abstract

Excess electric charge may be trapped within bulk solids during its synthesis and further transformation. This was definitely shown in polymer latexes, using analytical transmission electron and scanning probe microscopies. Moreover, charged species may be formed and trapped within solids following different events: charge injection, mechanochemical reactions, penetration of radiation and energetic particles, ion implantation or phase transitions. Slow-decaying charge is a characteristic of electrets that are now used in many technology areas. This chapter describes the formation and properties of electrified solids, the mechanisms for charge separation and dissipation and its implications to natural systems and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barthel AJ, Kim SH (2013) Surface chemistry dependence of water adsorption on solid substrates in humid ambient and humidity effects on wear of copper and glass surfaces. Tribol Mater Surf Interf 7:63–68

    Article  CAS  Google Scholar 

  2. Gouveia RF, Costa CAR et al (2008) Water vapor adsorption effect on silica surface electrostatic patterning. J Phys Chem C 112:17193–17199

    Article  CAS  Google Scholar 

  3. Baszkin A, Ter-Minassian-Saraga L (1971) Chemical structures of surface-oxidized and grafted polyethylene: adsorption and wetting studies. J Polym Sci Pt C 34:243–252

    Article  Google Scholar 

  4. Rezende C, Gouveia RF et al (2009) Detection of charge distributions in insulator surfaces. J Phys Condens Matter 21:263002

    Article  CAS  Google Scholar 

  5. Braga M, Leite CAP et al (2003) Hydrophobic polymer modification with ionic reagents: polystyrene staining with water-soluble dyes. Langmuir 19:7580–7586

    Article  CAS  Google Scholar 

  6. Sessler GM (1987) Physical principles of electrets. In: Sessler GM (ed) Topics in applied physics, vol 33. Springer, Berlin, pp 13–80

    Google Scholar 

  7. Kaufman GK, Gooding DM (2014) Electrets. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley, New York, pp 1–10

    Chapter  Google Scholar 

  8. Heaviside O (1885) Electromagnetic induction and its propagation. Electrician 14:230

    Google Scholar 

  9. Eguchi M (1925) On the permanent electret. Philos Mag Ser 49:178–192

    Article  Google Scholar 

  10. Zhou T, Zhang L et al (2016) Multilayered electret films based triboelectric nanogenerator. Nano Res 9(5):1442–1451

    Article  CAS  Google Scholar 

  11. McCarty LS, Whitesides GM (2008) Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew Chem Int Ed 47:2188–2207

    Article  CAS  Google Scholar 

  12. Gerhard-Multhaupt R (2002) Less can be more. Holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers. IEEE Trans Dielectr Electr Insul 9:850–859

    Article  CAS  Google Scholar 

  13. Anton SR, Farinholt KM et al (2014) Piezoelectric foam-based vibration energy harvesting. J Intell Mater Syst Struct 25:1681–1692

    Article  Google Scholar 

  14. Patel I, Siores E, Shah T (2010) Utilisation of smart polymers and ceramic based piezoelectric materials for scavenging wasted energy. Sens Actuat A Phys 159:213–218

    Article  CAS  Google Scholar 

  15. van Turnhout J (1987) Thermally stimulated discharge of electrets. In: Sessler GM (ed) Topics in applied physics, vol 33. Springer, Berlin, pp 81–215

    Google Scholar 

  16. Pissis P, Apekis L et al (1987) Multiplicity of dielectric relaxation times of dispersed ice microcrystals. Time dependence. IL Nuovo Cimento D 9(2):195–211

    Article  Google Scholar 

  17. Mascarenhas S (1987) Bioelectrets: electrets in biomaterials and bioplolymers. In: Sessler GM (ed) Topics in applied physics, vol 33. Springer, Berlin, pp 321–346

    Google Scholar 

  18. Vasiliu-Oprea C, Dan F (2006) Macromolecular mechanochemistry: polymer mechanochemistry. Cambridge International Science, Cambridge, p 390

    Google Scholar 

  19. Heinicke G (1984) Tribochemistry. Carl Hanser Verlag, München—Wien

    Google Scholar 

  20. Wojnárovits L (2011) Radiation chemistry. In: Vértes A, Nagy S et al (eds) Handbook of nuclear chemistry. Springer, Berlin, pp 1263–1331

    Chapter  Google Scholar 

  21. Gross B (1987) Radiation-induced charge storage and polarization effects, Chapter 4. In: Sessler GM (ed) Electrets, topics in applied physics, vol 33. Springer, Berlin

    Google Scholar 

  22. Burgo TAL, Ducati TRD et al (2012) Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28:7407–7416

    Article  CAS  Google Scholar 

  23. Burgo TAL, Erdemir A (2014) Bipolar tribocharging signal during friction force fluctuations at metal-insulator interfaces. Angew Chem Int Ed 53:12101–12105

    Article  CAS  Google Scholar 

  24. Sessler GM (1987) Physical principles of electrets. In: Sessler GM (ed) Topics in applied physics, vol 33. Springer, Heidelberg. Chapter 2, pp 13–80

    Google Scholar 

  25. Mohmeyer N, Müller B et al (2004) Nucleation of isotactic polypropylene by triphenylamine-based trisamide derivatives and their influence on charge-storage properties. Polymer 45:6655–6663

    Article  CAS  Google Scholar 

  26. Erhard DP, Lovera D et al (2010) Tailored additives to improve the electret performance of polycarbonates. Macromol Chem Phys 211:2179–2186

    Article  CAS  Google Scholar 

  27. Collins G, Federici J et al (2012) Charge generation, charge transport, and residual charge in the electrospinning of polymers: a review of issues and complications. J Appl Phys 111(4):044701

    Article  Google Scholar 

  28. Chudleigh PW (1976) Mechanism of charge transfer to a polymer surface by a conducting liquid contact. J Appl Phys 47:4475

    Article  CAS  Google Scholar 

  29. Burgo TAL, Silva CA et al (2013) Friction coefficient dependence on electrostatic tribocharging. Sci Rep 3:2384

    Article  Google Scholar 

  30. Burgo TAL, Rezende CA et al (2011) Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation. J Electrostat 69:401–409

    Article  CAS  Google Scholar 

  31. Ieda M, Sawa G et al (1967) A decay process of surface electric charges across poyethylene film. Jpn J Appl Phys 6:793–794

    Article  CAS  Google Scholar 

  32. Xu Z, Zhang L et al (2007) Decay of electric charge on corona charged polyethylene. J Phys D Appl Phys 40:7085–7089

    Article  CAS  Google Scholar 

  33. Wintle HJ (1972) Surface-charge decay in insulators with non-constant mobility and with deep trapping. J Appl Phys 43:2927–2930

    Article  CAS  Google Scholar 

  34. Baum EA, Lewis TJ et al (1977) Decay of electrical charge on polyethylene film. J Phys D Appl Phys 10:487–497

    Article  CAS  Google Scholar 

  35. Ribeiro JC (1950) On the thermo-dielectric effect. Anais Acad Bras Cienc 22:325–347

    Google Scholar 

  36. Workman EJ, Reynolds SE (1950) Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity. Phys Rev 78(3):254–259

    Article  CAS  Google Scholar 

  37. Gross B (1954) Theory of thermodielectric effect. Phys Rev 94(6):1545–1551

    Article  CAS  Google Scholar 

  38. Reynolds SE, Brook M et al (1957) Thunderstorm charge separation. J Meteorol 14:426–436

    Article  Google Scholar 

  39. Bauerecker S, Buttersack T (2014) Electric effect during the fast dentritic freezing of supercooled water droplets. J Phys Chem B 118:13629–13635

    Article  CAS  Google Scholar 

  40. Amin MS, Peterson TF et al (2006) Measurements of electric charge associated with evaporation and condensation of water on metallic surfaces as a consequence of pressure, humidity, and temperature change. J Electrostat 64:597–603

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Excess Charge in Solids: Electrets. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_7

Download citation

Publish with us

Policies and ethics