Skip to main content

Hygroelectricity: The Atmosphere as a Charge Reservoir

  • Chapter
  • First Online:
Chemical Electrostatics

Abstract

The adsorption of water vapor on solids contributes excess charge to them, depending on the hydrophobicity/hydrophilicity and on the acid–base properties of the solid surface. This is a complicating factor in the study of water adsorption that was observed in many different systems: cellulose, various metals and particulate solids including oxides, clay and surfactants. Another important consequence of water adsorption on solids is its effect in modifying charge patterns in thermoplastics and other hydrophobic solids, but under a slower kinetics than in hydrophilic solids. For this reason, atmospheric relative humidity is an important parameter in many experimental techniques, like Kelvin force microscopy. Water itself acquires net charge under different conditions: by flow electrification, or when it drops from a biased needle and also when bulk water is divided into fine aerosol particles. Each type of phenomena produces excess charge by a different mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agam N, Berliner PR (2006) Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ 64:572–590

    Article  Google Scholar 

  2. Ludwig R (2001) Water: from clusters to the bulk. Angew Chem Int Ed 40:1808–1827

    Article  CAS  Google Scholar 

  3. Hagymassy J, Brunauer S et al (1969) Pore structure analysis by water vapor adsorption. J Colloid Interf Sci 29:485–491

    Article  CAS  Google Scholar 

  4. Hutson ND, Yang RT (1997) Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption 3:189–195

    Article  CAS  Google Scholar 

  5. Solomon I, Ribeiro AM et al (2013) Adsorption equilibrium of water vapor on activated carbon and alumina and carbon and alumina impregnated with hygroscopic salt. Turk J Chem 37:358–365

    CAS  Google Scholar 

  6. Homma Y, Chiashi S et al (2013) Photoluminescence measurements and molecular dynamics simulations of water adsorption on the hydrophobic surface of a carbon nanotube in water vapor. Phys Rev Lett 110:157402

    Article  Google Scholar 

  7. Soares LC, Bertazzo S et al (2008) A new mechanism for the electrostatic charge build-up and dissipation in dielectrics. J Brazil Chem Soc 19(2):277–286

    CAS  Google Scholar 

  8. Ducati TRD, Simões LH et al (2010) Charge partitioning at gas-solid interfaces: humidity causes electricity buildup on metals. Lagmuir 26(17):13763–13766

    Article  CAS  Google Scholar 

  9. Danaa CDP, Banazakia AS et al (2015) Humidity potential as hygroelectric power in Indonesia: opportunities and challenges. In: The 4th Indonesia EBTKE-ConEx, Jakarta, pp 127–130

    Google Scholar 

  10. Gouveia RF, Galembeck F (2009) Electrostatic charging of hydrophilic particles due to water adsorption. J Am Chem Soc 131:11381–11386

    Article  CAS  Google Scholar 

  11. Gouveia RF, Bernardes JS et al (2012) Acid-base site detection and mapping on solid surfaces by Kelvin force microscopy (KFM). Anal Chem 84:10191–10198

    Article  CAS  Google Scholar 

  12. Tanabe K, Misono M et al (eds) (1989) New solid acids and bases: their catalytic properties. In: Studies in surface science and catalysis, vol 51. Elsevier Science, New York

    Google Scholar 

  13. Barth C, Foster AS et al (2011) Recent trends in surface characterization and chemistry with high-resolution scanning force methods. Adv Mater 23:477–501

    Article  CAS  Google Scholar 

  14. Janzen MC, Ponder JB et al (2006) Colorimetric sensor arrays for volatile organic compounds. Anal Chem 78:3591–3600

    Article  CAS  Google Scholar 

  15. Gouveia RF, Costa CAR et al (2008) Water vapor adsorption effect on silica surface electrostatic patterning. J Phys Chem C 112:17193–17199

    Article  CAS  Google Scholar 

  16. Schrödinger E (1910) Ăœber die Leitung der Elektrizität auf der Oberfläche von Isolatoren an feuchter Luft. Ph.D. thesis, University of Wien

    Google Scholar 

  17. Seaver AE (2005) Surface resistivity of uncoated insulators. J Electrocardiol 63:203–222

    CAS  Google Scholar 

  18. Lee LT, Leite CAP et al (2004) Controlled nanoparticle assembly by dewetting of charged polymer solutions. Langmuir 20:4430

    Article  CAS  Google Scholar 

  19. Bernardes JS, Rezende CA et al (2010) Morphology and self-arraying of SDS and DTAB dried on mica surface. Langmuir 26:7824–7832

    Article  CAS  Google Scholar 

  20. Burgo TAL, Rezende CA et al (2011) Electric potential decay on polyethylene: role of atmospheric water on electric charge build-up and dissipation. J Electrostat 69:401–409

    Article  CAS  Google Scholar 

  21. Healy TW, Fuerstenau DW (2007) The isoelectric point/point-of zero-charge of interfaces formed by aqueous solutions and nonpolar solids, liquids, and gases. J Colloid Interf Sci 309:183–188

    Article  CAS  Google Scholar 

  22. Kudin KN, Car R (2008) Why are water-hydrophobic interfaces charged? J Am Chem Soc 130:3915–3919

    Article  CAS  Google Scholar 

  23. Burgo TAL, Ducati TRD et al (2012) Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces. Langmuir 28:7407–7416

    Article  CAS  Google Scholar 

  24. Yatsuzuka K, Mizuno Y et al (1994) Electrification phenomena of pure water droplets dripping and sliding on a polymer surface. J Electrostat 32:157–171

    Article  Google Scholar 

  25. Yatsuzuka K, Higashiyama Y et al (1996) Electrification of polymer surface caused by sliding ultrapure water. IEEE Trans Ind 32:825–831

    Article  CAS  Google Scholar 

  26. Ravelo B, Duval F et al (2011) Demonstration of the triboelectricity effect by the flow of liquid water in the insulating pipe. J Electrostat 69:473–478

    Article  Google Scholar 

  27. Paillat T, Moreau E et al (2000) Streaming electrification of a dielectric liquid through a glass capillary. In: Industry Applications Conference, 2000, Conference Record of the 2000 IEEE, vol 2, pp 743–748

    Google Scholar 

  28. Burgo TAL, Galembeck F et al (2016) Where is water in the triboelectric series? J Electrostat 80:30–33

    Article  Google Scholar 

  29. Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymericmaterials:theinfluenceofchemical structure and properties. J Electrostat 62:277–290

    Article  CAS  Google Scholar 

  30. Zheng JM, Chin W et al (2006) Surfaces and interfacial water: evidence that hydrophilic surfaces have long-range impact. Adv Colloid Interf Sci 127:19–27

    Article  CAS  Google Scholar 

  31. Das R, Pollack GH (2013) Charge-based forces at the Nafion-water interface. Langmuir 29:2651–2658

    Article  CAS  Google Scholar 

  32. Amin MS, Peterson TF Jr et al (2006) Advanced Faraday cage measurements of charge and open-circuit voltage using water dielectrics. J Electrostat 64:424–430

    Article  Google Scholar 

  33. Santos LP, Ducati TRD et al (2011) Water with excess electric charge. J Phys Chem 115:11226–11232

    CAS  Google Scholar 

  34. Kaufman YJ, Tanré D et al (2002) A satellite view of aerosols in the climate system. Nature 419:215–223

    Article  CAS  Google Scholar 

  35. Hirsikko A, Niemien T et al (2011) Atmospheric ions and nucleation: a review of observations. Atmos Chem Phys 11:767–798

    Article  CAS  Google Scholar 

  36. Zhang R, Khalizov A et al (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112:1957–2011

    Article  CAS  Google Scholar 

  37. Wong J, Knok PCL et al (2016) Bipolar electrostatic charge and mass distributions of powder aerosols—effects of inhaler design and inhaler material. J Aerosol Sci 95:104–117

    Article  CAS  Google Scholar 

  38. Burgo TAL, Galembeck F (2016) Electrified water: liquid, vapor and aerosol. J Brazil Chem Soc 27:229–238

    Google Scholar 

  39. Burgo TAL, Galembeck F (2015) On the spontaneous electric-bipolar nature of aerosols formed by mechanical disruption of liquids. Colloids Interf Sci Commun 7:7–11

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Hygroelectricity: The Atmosphere as a Charge Reservoir. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_6

Download citation

Publish with us

Policies and ethics