Skip to main content

Accidents and Losses Caused by Electrostatic Discharge

  • Chapter
  • First Online:
Chemical Electrostatics

Abstract

Many accidents including large disasters are triggered by electrostatic discharge. Human lives and billions of dollars in property damage are lost every year, mainly due to the unobtrusive condition of electrostatic charge: it is not detected by human vision and other senses, as opposed for instance to mass and temperature. Accumulated charge in any portion of matter is hardly perceptible without suitable instrumentation. Electrified materials may appear harmless and safe to the naked eye, even when they are storing large amounts of charge, approaching the dielectric breakdown limits. For this reason, safety codes for the avoidance of hazards due to static electricity are very important and they are constantly updated in industrial environments. This chapter describes situations where electrostatic charge is a safety concern together with protective measures, discussing them with the help of recent knowledge on charging mechanisms and charge stability in various systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor DM, Secker PE (1994) Industrial electrostatics (electronic & electrical engineering research studies). In: Hughes JF (ed) Electrostatics and electrostatic application series, vol 13. Research Studies Press (Somerset), New York

    Google Scholar 

  2. Luttgens G, Wilson N (1997) Electrostatic hazards. Butterworth-Heinemann, Oxford

    Google Scholar 

  3. Kaiser KL (2005) Electrostatic discharge. CRC Press, Boca Raton

    Google Scholar 

  4. Jones TB, King JL et al (1991) Powder handling and electrostatics: understanding and preventing hazards. CRC Press, Boca Raton

    Google Scholar 

  5. Britton LG (2010) Avoiding static ignition hazards in chemical operations. Wiley, New York

    Google Scholar 

  6. Oda T, Myasaka H et al. (2009) The low voltage electrostatic discharge on the contacting point. 2009 IEEE Applications Society Annual Meeting. IEEE Industry Applications Society Annual Meeting, p 299–304.

    Google Scholar 

  7. Greason WD (1992) Electrostatic discharge in electronics. Research Studies Press (Taunton), New York.

    Google Scholar 

  8. Sadiku MNO, Akujuobi CM (2004) Electrostatic discharge (ESD). IEEE Potentials 22:39–41

    Article  Google Scholar 

  9. Voldman SH (2004) A review of electrostatic discharge (ESD) in advanced semiconductor technology. Microb Releases 44:33–46

    Google Scholar 

  10. Lou L, Liou JJ (2008) An improved compact model of silicon-controlled rectifier (SCR) for electrostatic discharge (ESD) applications. IEEE T Electron Dev 55(12):3517–3524

    Article  CAS  Google Scholar 

  11. Ker MD, Hsu KC (2005) Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits. IEEE T Device Mat Re 5(2):235–249

    Article  Google Scholar 

  12. Liu HY, Lin CW et al. (2006) Current path analysis for electrostatic discharge protection. IEEE/ACM International Conference on Computer-Aided Design, p 510–515. http://cc.ee.ntu.edu.tw/~ywchang/Papers/iccad06-esd.pdf. Accessed 13 Sept 2016

  13. Cester A, Gerardin S et al (2006) Electrostatic discharge effects in ultrathin gate oxide MOSFETs. IEEE T Device Mat Re 6(1):87–94

    Article  Google Scholar 

  14. Griffoni A, Tazzoli A et al. (2008) Electrostatic discharge effects in fully depleted SOI MOSFETs with ultra-thin gate oxide and different strain-inducing techniques. Electrical Overstress/Electrostatic Discharge Symposium Proceedings, pp 59–66.

    Google Scholar 

  15. Muchaidze G, Koo J et al (2008) Susceptibility scanning as a failure analysis tool for system-level electrostatic discharge (ESD) problems. IEEE T Electromagn C 50(2):268–276

    Article  Google Scholar 

  16. Xu D, Li J et al (2003) Discharge characteristics and applications for electrostatic precipitation of direct current: Corona with spraying discharge electrodes. J Electrostat 57:217–224

    Article  CAS  Google Scholar 

  17. Bauer-Reich C, Reich M et al. (2011) The interaction of electrostatic discharge and RFID (2011) advanced radio frequency identification design and applications, chapter 8, pp 155–170. http://www.intechopen.com/books/advanced-radio-frequency-identification-design-and-applications/the-interaction-of-electrostatic-discharge-and-rfid. Accessed 13 Sept 2016

  18. Tazzoli A, Peretti V et al (2007) Electrostatic discharge and cycling effects on ohmic and capacitive RF-MEMS switches. IEEE Trans Device Mater Reliab 7(3):429–436

    Article  Google Scholar 

  19. Jeon SK, Lee JG et al (2009) The effect of the internal capacitance of InGaN-light emitting diode on the electrostatic discharge properties. Appl Phys Lett 94:131106

    Article  Google Scholar 

  20. Lai FI, Hsieh YL et al (2011) Enhancement in the extraction efficiency and resisting electrostatic discharge ability of GaN-based light emitting diode by naturally grown textured surface. Diamond Relat Mater 20:770–773

    Article  CAS  Google Scholar 

  21. Sun K, Hangyu Z et al (2001) Investigation of electrostatics during sulphur crushing operations. J Electrostat 51:435–439

    Google Scholar 

  22. Coyle RJ, Jon MC (2000) Electrostatic discharge failure mechanism for cordless phone charge contacts. J Electrostat 49:215–223

    Article  Google Scholar 

  23. Fronabarger JW (1996) The electrostatic discharge sensitivity of HMX in the confined state. International Pyrotechnics Seminars 22nd, pp 509–516

    Google Scholar 

  24. Wang AZH, Tsay CH (2001) On a dual-polarity on-chip electrostatic discharge protection structure. IEEE Trans Electron Dev 48(2):978–984

    Article  Google Scholar 

  25. Davenas A, Rat R (2002) Sensitivity of solid rocket motors to electrostatic discharge: history and future. J Propul Power 18(4):805–809

    Article  CAS  Google Scholar 

  26. Beloni E, Dreizin EL (2009) Experimental study of ignition of magnesium powder by electrostatic discharge. Combust Flame 156:1386–1395

    Article  CAS  Google Scholar 

  27. Beloni E, Dreizin EL (2011) Ignition of titanium powder layers by electrostatic discharge. CombustSci Technol 183:823–845

    Article  CAS  Google Scholar 

  28. Imamura T, Mogi T et al (2009) Control of the ignition possibility of hydrogen by electrostatic discharge at a ventilation duct outlet. Int J Hydrogen Energy 34:2815–2823

    Article  CAS  Google Scholar 

  29. Wang QG, Zhang X et al (2009) Research on the possibility of ignition of materials by electrostatic discharge in pure oxygen environment at different pressures. J Electrostat 67:876–879

    Article  CAS  Google Scholar 

  30. Kemsley J (2016) University of Hawaii lab explosion likely originated in electrostatic discharge. Chem Eng News 94(28):5. http://cen.acs.org/articles/94/i28/University-Hawaii-lab-explosion-likely.html. Accessed 13 Sept 2016

    Google Scholar 

  31. Cross J, Farrer D (2012) Dust explosions. Springer, New York

    Google Scholar 

  32. Field P (2012) Dust explosions. Elsevier, New York

    Google Scholar 

  33. Eckhoff RK (2003) Dust explosions in the process industries. Gulf, Amsterdam

    Google Scholar 

  34. Amyotte P (2012) An introduction to dust explosions. Elsevier, Amsterdam

    Google Scholar 

  35. Barton K (2002) Dust explosion prevention and protection: a practical guide. Elsevier, Amsterdam

    Google Scholar 

  36. Nifuku M, Katoh H (2001) Incendiary characteristics of electrostatic discharge for dust and gas explosion. J Loss Prevent Proc 14:547–551

    Article  Google Scholar 

  37. Yuan Z, Khakzad N et al (2015) Dust explosions: a threat to the process industries. Process Saf Environ 98:57–71

    Article  CAS  Google Scholar 

  38. Amyotte PR (2014) Some myths and realities about dust explosions. Process Saf Environ Prot 92:292–299

    Article  CAS  Google Scholar 

  39. (2006) Combustible dust hazard study. In: Investigation Report No. 2006-H-1, U.S. Chemical Safety and Hazard Investifation Board, chapter 4, p 25. http://www.csb.gov/assets/1/19/dust_final_report_website_11-17-06.pdf. Accessed 13 Sept 2016

  40. Choi KS, Yamaguma M et al (2010) Electrostatic charges during liquid leakage. J Loss Prevent Proc 23:294–299

    Article  Google Scholar 

  41. Greason WD (1992) Electrostatic discharge: a charge driven phenomenon. J Electrostat 28:199–218

    Article  Google Scholar 

  42. Voldman SH (1999) The state of the art of electrostatic discharge orotection: physics, technology, circuits, design, simulation, and scaling. IEEE J Solid State Circ 34(9):1272–1282

    Article  Google Scholar 

  43. Vinson JE, Liou JJ (2000) Electrostatic discharge in semiconductor devices: protection techniques. Proc IEEE 88(12):1878–1900

    Article  Google Scholar 

  44. Cheng KB, Ueng TH et al (2001) Electrostatic discharge properties of stainless steel/polyester woven fabrics. Text Res J 71(8):732–738

    Article  CAS  Google Scholar 

  45. Al-Ghamdi AA, El-Tantawy F et al (2009) Stability of new electrostatic discharge protection and electromagnetic wave shielding effectiveness from poly(vinyl chloride)/graphite/nickel nanoconducting composites. Polym Degrad Stab 94:980–986

    Article  CAS  Google Scholar 

  46. JII L, Yang SB et al (2009) Carbon nanotubes-polypropylene nanocomposites for electrostatic discharge applications. Macromolecules 42:8328–8334

    Article  Google Scholar 

  47. Poper KH, Collins ES et al (2014) Controlling the electrostatic discharge ignition sensitivity of composite energetic materials using carbon nanotube additives. J Electrostat 72:428–432

    Article  CAS  Google Scholar 

  48. Kuroda Y, Kawada Y et al (2003) Effect of electrode shape on discharge current and performance with barrier discharge type electrostatic precipitator. J Electrostat 57:407–415

    Article  CAS  Google Scholar 

  49. Said HA, Nouri H et al (2015) Effect of air flow on corona discharge in wire-to-plate electrostatic precipitator. J Electrostat 73:19–25

    Article  Google Scholar 

  50. (2010) Fundamentals of electrostatic discharge. Part six—ESD standards. ESD Association, New York. https://www.esda.org/about-esd/esd-fundamentals/part-6-esd-standards/. Accessed 13 Sept 2016

  51. ATT-TP-76306 (AT&T) (2009) Electrostatic discharge control. https://ebiznet.sbc.com/sbcnebs/Documents/ATT-TP-76306.pdf. Accessed 13 Sept 2016.

  52. De SK, Aluru NR (2005) Complex oscillations and chaos in electrostatic micro-electromechanical systems under superharmonic excitations. Phys Rev Lett 94:204101

    Article  Google Scholar 

  53. Tajaddodianfar F, Yazdi MRH et al (2015) On the chaotic vibrations of electrostatically actuated arch micro/nano resonators: a parametric study. Int J Bifurcation Chaos 25:1550106

    Article  Google Scholar 

  54. Aplin KL, Harrison RG (2013.) Lord Kelvin’s atmospheric electricity measurements https://arxiv.org/pdf/1305.5347.pdf. Accessed 13 Sept 2016.

  55. Mazany RA, Businger S et al (2002) A lightning prediciton index that utilizes GPS integrated precipitable water vapor. Weather Forecast 17:1034–1047

    Article  Google Scholar 

  56. Greason WD (1992) Electrostatic discharge in electronics. Research Studies Press (Taunton), New York, pp 56–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Galembeck, F., A. L. Burgo, T. (2017). Accidents and Losses Caused by Electrostatic Discharge. In: Chemical Electrostatics. Springer, Cham. https://doi.org/10.1007/978-3-319-52374-3_12

Download citation

Publish with us

Policies and ethics