Skip to main content

Nanoparticles: From Fundamentals to Applications

  • Chapter
  • First Online:
Handbook of Industrial Chemistry and Biotechnology
  • 7559 Accesses

Abstract

Research in the area of nanotechnology has seen an explosive growth during the past two decades, spurred by significant investments in basic research and leading to the development of a variety of consumer-based products. As of August 2015, an inventory conducted by the Project on Emerging Nanotechnologies has identified over 1800 nanotechnology-based consumer products (http://www.nanotechproject.org/inventories/consumer; 2015). A technical report published recently estimates the global market value for nanotechnology to be $27 billion in 2015 (http://www.bccresearch.com/market-research/nanotechnology/nanotechnology-market-assessment-report-nan031f.html; 2015). A significant portion of this market share is due to nanomaterials with contributions of nearly $ 20 billion. This suggests that significant progress has been made towards commercialization of nanomaterials. In this chapter, we will explore the myriad examples of nanomaterials developed and utilized for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The project on emerging nanotechnologies (2015) Woodrow Wilson International Center for Scholars. http://www.nanotechproject.org/inventories/consumer. Accessed Aug 2015

  2. Nanotechnology: A realistic market assessment, http://www.bccresearch.com/market-research/nanotechnology/nanotechnology-market-assessment-report-nan031f.html. Accessed Aug 2015

  3. Grätzel M, Kalyanasundaram K (eds) (2011) Nanotechnology: light and energy. Wiley-VCH, Berlin, Germany

    Google Scholar 

  4. Faunce T (ed) (2012) Nanotechnology for a sustainable world: Global artificial photosynthesis as nanotechnology’s moral culmination. Edward Elgar, MA

    Google Scholar 

  5. Sparks S (ed) (2012) Nanotechnology: business applications and commercialization. CRC Press, Florida

    Google Scholar 

  6. Smith GB, Granqvist CG (eds) (2011) Green nanotechnology: solutions for sustainability and energy in the built environment. CRC Press, Florida

    Google Scholar 

  7. Wehrspohn R (ed) (2011) Ordered porous nanostructures and applications. Springer, New York

    Google Scholar 

  8. Welles AE (ed) (2010) Silver nanoparticles: properties, characterization and applications. Nova Science Publications, Hauppauge, New York

    Google Scholar 

  9. Rogach A (ed) (2010) Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications. Springer, New York

    Google Scholar 

  10. Klabunde KJ, Richards RM (2009) Nanoscale materials in chemistry. Wiley-VCH, Berlin, Germany

    Google Scholar 

  11. Ozin GA, Arsenault AC, Cademartiri L (eds) (2009) Nanochemistry: a chemical approach to nanomaterial. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  12. Niederberger M, Pinna N (eds) (2009) Metal oxide nanoparticles in organic solvents: Synthesis, formation, assembly and application. Springer, New York

    Google Scholar 

  13. de Villiers MM, Aramwit A, Kwon GS (eds) (2008) Nanotechnology in drug delivery. Springer, New York

    Google Scholar 

  14. Mitin VV, Kochelap VA, Stroscio MA (eds) (2008) Introduction to nanoelectronics: Science, nanotechnology, engineering, and applications. Cambridge University Press, Cambridge, UK

    Google Scholar 

  15. Wiesner M, Bottero J-Y (eds) (2007) Environmental nanotechnology: Applications and impacts of nanomaterials. McGraw-Hill, New York

    Google Scholar 

  16. Hutchison J, Kirkland A (eds) (2007) Nanocharacterisation. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  17. Wolf EL (ed) (2006) Nanophysics and nanotechnology: An introduction to modern concepts in nanoscience. Wiley-VCH, Berlin, Germany

    Google Scholar 

  18. Cavaleiro A, de Hosson JT (eds) (2006) Nanostructured coatings. Springer, New York

    Google Scholar 

  19. Wang ZL (ed) (2005) Nanowires and nanobelts: Materials, properties and devices: volume 1: Metal and semiconductor nanowires. Springer, New York

    Google Scholar 

  20. Miziolek AW, Karna SP, Vaia RA (eds) (2005) Defense applications of nanomaterials. American Chemical Society Symposium Series, Washington DC

    Google Scholar 

  21. Niemeyer CM, Mirkin CA (2004) Nanobiotechnology: concepts, applications and perspectives. Wiley-VCH, Berlin, Germany

    Google Scholar 

  22. Ratner MA, Ratner D (eds) (2002) Nanotechnology: A gentle introduction to the next big idea. Prentice Hall, New Jersey

    Google Scholar 

  23. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley-VCH, Berlin

    Google Scholar 

  24. Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Chem Soc Rev 44:5793–5805

    Google Scholar 

  25. Wilson M, Kannangara K, Smith G, Simmons M, Raguse B (2002) Nanotechnology: Basic science and emerging technologies. Chapman and Hall, CRC Press, Boca Raton

    Google Scholar 

  26. Taniguchi N (1974) On the basic concept of nano-technology. Proc. Intl. Conf. Prod. Eng. Part II, Japan Society of Precision Engineering, Tokyo

    Google Scholar 

  27. Drexler KE (1986) Engines of creation. Anchor Publishers, Garden City, NY

    Google Scholar 

  28. Feynman RP (1959) Annual meeting of the American Physical Society. California Institute of Technology, Pasadena, CA

    Google Scholar 

  29. Dickson DPE (1996) In: Edelstein AS, Cammarata RC (eds) Nanomaterials: Synthesis, properties and applications. Institute of Physics Publishing, Bristol, pp 459–476

    Google Scholar 

  30. Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55–75

    Google Scholar 

  31. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman RJ (1994) J Chem Soc Chem Commun 801–802

    Google Scholar 

  32. Klabunde KJ, Li YX, Tan BJ (1991) Chem Mater 3:30–39

    Google Scholar 

  33. Li YX, Klabunde KJ (1990) J Catal 126:173–186

    Google Scholar 

  34. Klabunde KJ, Efner HF, Murdock TO, Ropple R (1976) J Am Chem Soc 98:1021–1023

    Google Scholar 

  35. Schmid G, Chi L (1998) Adv Mater 10:515–525

    Google Scholar 

  36. Bethell D, Schiffrin DJ (1996) Nature 382:581

    Google Scholar 

  37. Milliron DJ, Buonsanti R, Llordes A, Helms, BA (2014) Acc Chem Res 47: 236–246

    Google Scholar 

  38. Green M, O’Brien P (1999) J Chem Soc Chem Commun 2235–2241

    Google Scholar 

  39. Klabunde KJ (1989) US Patent. 4,87,677

    Google Scholar 

  40. Stoeva S, Klabunde KJ, Sorensen CM, Dragieva I (2002) J Am Chem Soc 124:2305–2311

    Google Scholar 

  41. Lin XM, Sorensen CM, Klabunde KJ (2000) J Nanopart Res 2:157–164

    Google Scholar 

  42. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2003) Chem Mater 15:935–942

    Google Scholar 

  43. Klabunde KJ, Stoeva SI, Sorensen CM (2003) US Patent. 6,562,403

    Google Scholar 

  44. Prasad BLV, Stoeva SI, Sorensen CM, Klabunde KJ (2002) Langmuir 18:7515–7520

    Google Scholar 

  45. Lin XM, Sorensen CM, Klabunde KJ (1999) Chem Mater 11:198–202

    Google Scholar 

  46. Stoeva SI, Prasad BLV, Uma S, Stoimenov PK, Zaikovski V, Sorensen CM et al. (2003) J Phys Chem B 107:7441–7448

    Google Scholar 

  47. Zhang Q, Xie J, Yang J, Lee JY (2009) ACS Nano 3: 139–148

    Google Scholar 

  48. Smetana AB, Klabunde KJ, Marchin GR, Sorensen CM (2008) Langmuir 24:7457–7464

    Google Scholar 

  49. Maillard JY, Hartemann P (2013) Crit Rev Microbiol 39: 373–383

    Google Scholar 

  50. Creighton JA, Blatchford CG, Albrecht MG (1979) J Chem Soc Faraday Trans 2(75):790–798

    Google Scholar 

  51. Lee PC, Meisel D (1982) J Phys Chem 86:3391–3395

    Google Scholar 

  52. Leopold N, Lendl B (2003) J Phys Chem B 107:5723–5727

    Google Scholar 

  53. Caswell KK, Bender CM, Murphy CJ (2003) Nano Lett 3:667–669

    Google Scholar 

  54. Smetana A, Sorensen CM, Klabunde KJ (2005) J Colloid Interface Sci 284:521–526

    Google Scholar 

  55. Smetana A, Klabunde KJ, Sorensen CM, Ponce AA, Mwale B (2006) J Phys Chem B 110:2155–2158

    Google Scholar 

  56. Rossetti R, Ellison JL, Gibson JM, Brus LE (1983) J Chem Phys 80:4464–4469

    Google Scholar 

  57. Fojtik A, Weller H, Koch U, Henglein A (1984) Ber Bunsenges Phys Chem 88:969–977

    Google Scholar 

  58. Ramsden JJ, Grätzel M (1984) Faraday Trans 80:919–933

    Google Scholar 

  59. El-Sayed ME (2004) Acc Chem Res 37:326–333

    Google Scholar 

  60. Kamat PV (2007) J Phys Chem C 111:2834–2860

    Google Scholar 

  61. Kaneko M, Okura I (eds) (2002) Photocatalysis: Science and technology. Springer, New York

    Google Scholar 

  62. Bilan R, Fleury F, Nabiey I, Sukhanova A (2015) Bioconjugate Chem 26: 609–624

    Google Scholar 

  63. Cingarapu S, Yang Z, Sorensen CM, Klabunde KJ (2009) Chem Mater 21:1248–1252

    Google Scholar 

  64. Sorenson CM (2010) Nanoscale materials in chemistry: Environmental applications. American Chemical Society Symposium Series, Washington, DC, pp 35–49

    Google Scholar 

  65. Lucas E, Decker S, Khaleel A, Seitz A, Fultz S, Ponce A et al. (2001) Chem Eur J 7:2505–2510

    Google Scholar 

  66. Rajagopalan S, Koper O, Klabunde KJ, Malchesky PS, Winecki S (2005) US Patent. 6,887,302

    Google Scholar 

  67. Stark JV, Park DG, Lagadic I, Klabunde KJ (1996) Chem Mater 8:1904–1912

    Google Scholar 

  68. Choudary BM, Mulukutla RS, Klabunde KJ (2003) J Am Chem Soc 125:2020–2021

    Google Scholar 

  69. Pierre AC, Pajonk GM (2002) Chem Rev 102:4243–4265

    Google Scholar 

  70. Kistler SS (1932) J Phys Chem 36:52–64

    Google Scholar 

  71. Teichner SJ (1986) Aerogel. In: Fricke J (ed) Proceedings of the First International Symposium, Wurzburg. Springer, Berlin, p 22

    Google Scholar 

  72. Utamapanya S, Klabunde KJ, Schlup JR (1991) Chem Mater 3:175–181

    Google Scholar 

  73. Ranjit KT, Martyanov I, Demydov D, Sitharaman U, Rodrigues S, Klabunde KJ (2006) J Sol-Gel Sci Techn 40:335–339

    Google Scholar 

  74. Kibombo HS, Zhao D, Gonshorowski A, Budhi S, Koppang M, Koodali, RT (2011) J Phys Chem C 115:6126–6135

    Google Scholar 

  75. Budhi S, Kibombo HS, Zhao D, Gonshorowski A, Budhi S, Koodali, RT (2011) Mater Lett 65:236–238

    Google Scholar 

  76. Rasalingam S, Kibombo HS, Wu C-M, Budhi S, Peng R, Baltrusaitis, Koodali, RT (2013) Catal Commun 31:66–70

    Google Scholar 

  77. Koper OB, Lagadic I, Volodin A, Klabunde KJ (1997) Chem Mater 9:2468–2480

    Google Scholar 

  78. Klabunde KJ, Stark JV, Koper O, Mohs C, Park DG, Decker S et al. (1996) J Phys Chem 100:12142–12153

    Google Scholar 

  79. Koper O, Klabunde KJ (1993) Chem Mater 5:500–505

    Google Scholar 

  80. Carnes CL, Kapoor PN, Klabunde KJ (2002) Chem Mater 14:2922–2929

    Google Scholar 

  81. Bedilo A, Klabunde KJ (1997) Nanostructured Mater 8:119–135

    Google Scholar 

  82. Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V et al. (2000) J Am Chem Soc 122:4921–4925

    Google Scholar 

  83. Melgunov MS, Melgunova EA, Zaikovskii VI, Fenelonov VB, Bedilo AF, Klabunde KJ (2003) Langmuir 19:10426–10433

    Google Scholar 

  84. Demydov D, Klabunde KJ (2004) J Non Cryst Solids 350:165–172

    Google Scholar 

  85. Kapoor PN, Heroux D, Mulukutla RS, Zaikovskii V, Klabunde KJ (2003) J Mater Chem 13:410–414

    Google Scholar 

  86. Carnes CL, Kapoor PN, Klabunde KJ, Bonevich J (2002) Chem Mater 14:2922–2929

    Google Scholar 

  87. Medine GM, Zaikovskii V, Klabunde KJ (2004) J Mater Chem 14:757–763

    Google Scholar 

  88. Kibombo HS, Peng R, Rasalingam S, Koodali RT (2012) Catal Sci Technol 2:1737–1766

    Google Scholar 

  89. Amato I (1993) Science 261:152–154

    Google Scholar 

  90. Koper O, Lagadic I, Klabunde KJ (1997) Chem Mater 9:838–848

    Google Scholar 

  91. Koper O, Klabunde KJ (1997) Chem Mater 9:2481–2485

    Google Scholar 

  92. Decker S, Klabunde KJ (1996) J Am Chem Soc 118:12465–12466

    Google Scholar 

  93. Fenelonov VB, Mel’gunov MS, Mishakov IV, Richards RM, Chesnokov VV, Volodin AM et al. (2001) J Phys Chem B 105:3937–3941

    Google Scholar 

  94. Yang YC (1999) Acc Chem Res 32:109–115

    Google Scholar 

  95. Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) J Phys Chem B 103:3225–3228

    Google Scholar 

  96. Wagner GW, Koper OB, Lucas E, Decker S, Klabunde KJ (2000) J Phys Chem B 104:5118–5123

    Google Scholar 

  97. Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN et al. (2001) J Am Chem Soc 123:1636–1644

    Google Scholar 

  98. Dong HR, Zeng GM, Tang L, Fan CZ, Zhang C, He XX, He Y (2015) Water Res 79:128–146

    Google Scholar 

  99. Weber AS, Grady AM, Koodali RT (2012) Catal Sci Technol 2:683–693

    Google Scholar 

  100. Smalley R (1999) Nanotechnology, Congressional Hearings—Emerging Technologies in the New Millennium. The U.S. Senate Committee on Commerce, Science and Transportation, May 12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjit T. Koodali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Koodali, R.T. (2017). Nanoparticles: From Fundamentals to Applications. In: Kent, J., Bommaraju, T., Barnicki, S. (eds) Handbook of Industrial Chemistry and Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-52287-6_30

Download citation

Publish with us

Policies and ethics