Skip to main content

Pupillary Disorders in Homonymous Visual Field Defects

  • Chapter
  • First Online:
Homonymous Visual Field Defects

Abstract

Classically, the pupil light reflex pathway is considered to be a simple reflex arc consisting of the retinal ganglion cells, intercalated neurons in the midbrain, the oculomotor nerve, and short ciliary nerves. However, there are some specialties in the structure of the afferent pupillary pathway that should be taken into account when interpreting pupillary disorders and that can help in the topodiagnosis of the lesion. Moreover, studies in patients with lesions of the retrogeniculate pathway showed that the pupillary pathway is more complex than previously assumed and the retrogeniculate visual pathway and the visual cortex are also involved in the pupillary light reaction. Clear anatomic evidence is still lacking but pupillographic measurements in patients with various disorders of the visual pathway support the existence of two pupillomotor channels that drive the pupil light reaction – the subcortical (more primitive, luminance channel associated with the intrinsically photosensitive retinal ganglion cells) and the suprageniculate (responds to shifts in structured stimuli, is driven by the rods and cones, and receives input from the visual cortex and extrastriate areas). The chapter summarizes possible pupillary findings in patients with homonymous hemianopia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wernicke C. Über hemianopische Pupillenreaktion. Fortschr Med. 1883;1:9–53. (Article in German).

    Google Scholar 

  2. Wilhelm H. Pupille und retrogenikuläre Sehbahn. Ophthalmologe. 1996;93:319–24. (Article in German).

    CAS  PubMed  Google Scholar 

  3. Schmid R, Lüdtke H, Wilhelm B, Wilhelm H. Pupil campimetry in patients with visual field loss. Eur J Neurol. 2005;12(8):602–8.

    Article  CAS  PubMed  Google Scholar 

  4. Skorkovská K, Wilhelm H, Lüdtke H, Wilhelm B. How sensitive is pupil campimetry in hemifield loss? Graefes Arch Clin Exp Ophthalmol. 2009;247(7):947–53.

    Article  PubMed  Google Scholar 

  5. Kardon RH. Pupil perimetry. Curr Opin Ophthalmol. 1992;3(5):565–70.

    Article  CAS  PubMed  Google Scholar 

  6. Skorkovská K, Lüdtke H, Wilhelm H, Wilhelm B. Pupil campimetry in patients with retinitis pigmentosa and functional visual field loss. Graefes Arch Clin Exp Ophthalmol. 2009;247(6):847–53.

    Article  PubMed  Google Scholar 

  7. Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci. 2000;20(2):600–5.

    CAS  PubMed  Google Scholar 

  8. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science. 2002;295(5557):1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, Hankins MW, et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 2003;424(6944):76–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW. Diminished pupillary light reflex at high irradiances in melanopsin knockout mice. Science. 2003;299(5604):245–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kawasaki A, Kardon RH. Intrinsically photosensitive retinal ganglion cells. J Neuroophthalmol. 2007;27(3):195–204. Review.

    Article  PubMed  Google Scholar 

  12. Wilhelm BJ. [The eye of the inner clock—pupil research in a new light.] Das Auge der Inneren Uhr – Pupillenforschung in neuem Licht. Klin Monbl Augenheilkd. 2010;227(11):840–4. (Article in German).

    Article  CAS  PubMed  Google Scholar 

  13. Skorkovská K, Maeda F, Kelbsch C, Peters T, Wilhelm B, Wilhelm H. Pupillary response to chromatic stimuli. Cesk Slov Neurol N. 2014;77/110(3):334–8.

    Google Scholar 

  14. Kupfer C, Chumbley L, Downer J. Quantitative histology of optic nerve, optic tract and lateral geniculate nucleus of man. J Anat. 1967;101(Pt 3):393–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schmid R, Wilhelm B, Wilhelm H. Naso-temporal asymmetry and contraction anisocoria in the pupillomotor system. Graefes Arch Clin Exp Ophthalmol. 2000;238(2):123–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kardon RH, Kawasaki A, Miller NR. Origin of the relative afferent pupillary defect in optic tract lesions. Ophthalmology. 2006;113(8):1345–53.

    Article  PubMed  Google Scholar 

  17. Johnson RE, Bell RA. Relative afferent pupillary defect in a lesion of the pretectal afferent pupillary pathway. Can J Ophthalmol. 1987;22(5):282–4.

    CAS  PubMed  Google Scholar 

  18. Forman S, Behrens MM, Odel JG, Spector RT, Hilal S. Relative afferent pupillary defect with normal visual function. Arch Ophthalmol. 1990;108(8):1074–5.

    Article  CAS  PubMed  Google Scholar 

  19. King JT, Galetta SL, Flamm ES. Relative afferent pupillary defect with normal vision in a glial brainstem tumor. Neurology. 1991;41(6):945–6.

    Article  PubMed  Google Scholar 

  20. Papageorgiou E, Wermund T, Wilhelm H. Pupil perimetry demonstrates hemifield pupillary hypokinesia in a patient with a pretectal lesion causing a relative afferent pupil defect but no visual field loss. J Neuroophthalmol. 2009;29(1):33–6.

    Article  PubMed  Google Scholar 

  21. Tychsen L, Hoyt WF. Relative afferent pupillary defect in congenital occipital hemianopia. Am J Ophthalmol. 1985;100(2):345–6.

    Article  CAS  PubMed  Google Scholar 

  22. Harms H. Grundlagen, Methodik und Bedeutung der Pupillenperimetrie für die Physiologie und Pathologie des Sehorgans. Albrecht Von Graefes Arch Ophthalmol. 1949;149:1–68.

    Article  Google Scholar 

  23. Harms H. Hemianopische Pupillenstarre. Klin Monbl Augenheilkd. 1951;118:133–47. (Article in German).

    CAS  Google Scholar 

  24. Bresky R, Charles S. Pupil motor perimetry. Am J Ophthalmol. 1969;68(1):108–12.

    Article  CAS  PubMed  Google Scholar 

  25. Cibis GW, Campos EC, Aulhorn E. Pupillary hemiakinesia in suprageniculate lesions. Arch Ophthalmol. 1975;93:1322–7.

    Article  CAS  PubMed  Google Scholar 

  26. Alexandridis E, Krastel H, Reuther R. Pupillenreflexstörungen bei Läsionen der oberen Sehbahn. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1979;209(3):199–208. (Article in German).

    Article  CAS  PubMed  Google Scholar 

  27. Hellner KA, Jensen W, Mueller-Jensen A. [Videoprocessing pupillographic perimetry in hemianopsia] Fernsehbildanalytische pupillographische Perimetrie bei Hemianopsie. Klin Monbl Augenheilkd. 1978;172(5):731–5. (Article in German).

    CAS  PubMed  Google Scholar 

  28. Wilhelm H, Wilhelm B, Petersen D, Schmidt U, Schiefer U. Relative afferent pupillary defects in patients with geniculate and retrogeniculate lesions. Neuro Ophthalmol. 1996;16(4):219–24.

    Article  Google Scholar 

  29. Papageorgiou E, Ticini LF, Hardiess G, Schaeffel F, Wiethoelter H, Mallot HA, et al. The pupillary light reflex pathway: cytoarchitectonic probabilistic maps in hemianopic patients. Neurology. 2008;70(12):956–63.

    Article  CAS  PubMed  Google Scholar 

  30. Barbur JL, Keenleyside MS, Thompson WD. Investigations of central visual processing by means of pupillometry. In: Kulikowski JJ, Dickinson CM, Murray TJ, editors. Seeing contour and colour. Oxford: Pergamon Press; 1987. p. 431–51.

    Google Scholar 

  31. Barbur JL. Learning from the pupil – studies of basic mechanisms and clinical applications. In: Chalupa LM, Werner JS, editors. The visual neurosciences. Cambridge: MIT Press; 2004. p. 641–56.

    Google Scholar 

  32. Wilhelm BJ, Wilhelm H, Moo S, Barbur JL. Pupil response components: studies in patients with Parinaud’s syndrome. Brain. 2002;125(Pt 10):2296–307.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolína Skorkovská MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Skorkovská, K., Wilhelm, B., Wilhelm, H. (2017). Pupillary Disorders in Homonymous Visual Field Defects. In: Skorkovská, K. (eds) Homonymous Visual Field Defects. Springer, Cham. https://doi.org/10.1007/978-3-319-52284-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52284-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52282-1

  • Online ISBN: 978-3-319-52284-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics