Skip to main content

Immunocompetent Cells and Their Role in Polymyalgia Rheumatica and Giant Cell Arteritis

  • Chapter
  • First Online:
Polymyalgia Rheumatica and Giant Cell Arteritis

Abstract

Giant cell arteritis (GCA) and polymyalgia reumatica (PMR) are two closely related syndromes affecting elderly people. General experience says that with age the capacity to generate protective immune response declines whereas reactivity to autoantigens increases. GCA and PMR is an inflammatory vasculopathy mediated by pathogenic condition of unknown aetiology.Β cells are extremely rare in the vascular lesions, which is consistent with the lack of antibody production and of immune complex deposition or hypergammaglobulinemia in GCA. The presence of high levels of autoantibodies in the serum of patients with GCA and PMR suggested the idea that there could be a B-cell activation in these patients. B cells not only produce antibodies, but also modulate T cell responses by secreting proinflammatory and antiinflammatory cytokines such as tumor necrosis factor α and interleukin-10, respectively. Furthermore,effector B (Beff) cells can potentiate T cell– mediated autoimmunity via secretion of IL-6. B cells from GCA patients with active disease had an enhanced capacity for IL- 6 production and B cell-activating factor was strongly associated with disease activity. However, much less is known about the role circulating Τ cells in patients with GCA and PMR. Besides Τ lymphocytes, macrophages are the second components of the vascular lesions. Their role in the inflammatory events in the arterial wall is unclear, although during the recent 10 years also involvement of vascular dendritic cells in the inflammatory process has been documented. Compared with noninflamed temporal arteries, inflamed specimens contain the T cell products IFN-γ and interleukin -2 and the CD68+ macrophage products IL-1 beta, IL-6 and transforming growth factor β (TGF-β ). TGF-β was most abundantly found and was produced in conjunction with, but also in the absence of IL-1 β and IL-6. Markedly elevated IL-6 and IL-1 receptor antagonist concentrations were found at the time of PMR diagnosis, thus prior to start of glucocorticoid therapy.The open is question about of number of circulating Τ cells and other subtypes in patients with PMR and GCA. Significantly reduced percentages and number of CD8+ cells have been found in 40% to 80% of patients with PMR and GCA and their role have not been fully clarified.The cellular players and their mediators in PMR and GCA are known, are needed but further studies to deepen the information on them, and it gives new hopes to treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huston KA, Hunder GC, Lie JT, et al. Temporal arteritis: a 25-years epidemiological, clinical, and pathologic study. Ann Intern Med. 1978;88:162–7.

    Article  CAS  PubMed  Google Scholar 

  2. Weyand CM, Hicok CK, Hunder GG, Goronzy IJ. Tissue cytokine patterns in patients with polymyalgia rheumatica and giant cell arteritis. Ann Intern Med. 1994;121:484–91.

    Article  CAS  PubMed  Google Scholar 

  3. Nagel MA, White T, Gilden D. Varicella-zoster virus in giant cell arteritis-reply. JAMA Neurol. 2016;73:239.

    Article  PubMed  Google Scholar 

  4. Nagel MA, White T, Khmeleva N, et al. Analysis of varicella-zoster virus in temporal arteries biopsy positive and negative for giant cell arteritis. JAMA Neurol. 2015;72:1281–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Uddhammar A, Sundqvist KG, Ellis B, et al. Cytokines and adhesion molecules in patients with polymyalgia rheumaica. Br J Rheumatol. 1998;37:766–9.

    Article  CAS  PubMed  Google Scholar 

  6. Emilie D, Liozon E, Crevon MC, et al. Production of interleukin 6 by granulomas of giant cell arteritis. Hum Immunol. 1994;39:17–24.

    Article  CAS  PubMed  Google Scholar 

  7. Wagner DA, Bjornsson J, Bartley GB, et al. Interferon gamma producing T cells in giant cell vasculitis represent a minority of tissue infiltrating cells and are located distant from the site of pathology. Am J Pathol. 1996;148:1925–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. van der Geest KS, Abdulahad WH, Rutgers A, et al. Serum markers associated with disease activity in giant cell arteritis and polymyalgia rheumatica. Rheumatology (Oxford). 2015;54:1397–402.

    Article  Google Scholar 

  9. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121:906–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geri G, Terrier B, Rosenzwajg M, Wechsler B, Touzot M, et al. Critical role of IL-21 in modulating TH17 and regulatory T cells in behcet disease. J Allergy Clin Immunol. 2011;128:655–64.

    Article  CAS  PubMed  Google Scholar 

  11. Saito H, Tsurikisawa N, Tsuburai T, Oshikata C, Akiyama K. Cytokine production profile of CD41 T cells from patients with active Churg-Strauss syndrome tends toward Th17. Int Arch Allergy Immunol. 2009;149(Suppl 1):61–5.

    Article  CAS  PubMed  Google Scholar 

  12. Samson M, Audia S, Fraszczak J, Trad M, Ornetti P, et al. Th1 and Th17 lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. Arthritis Rheum. 2012;64:3788–98.

    Article  CAS  PubMed  Google Scholar 

  13. Terrier B, et al. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. Arthritis Rheum. 2012;64:2001–11.

    Article  CAS  PubMed  Google Scholar 

  14. Martinez-Taboada VM, Goronzy IJ, Weyand CM. Clonally expanded CD8 T cells in patients with polymyalgia rheumatica and giant cell arteritis. Clin Immunol Immunopathol. 1996;79:263–70.

    Article  CAS  PubMed  Google Scholar 

  15. Weyand CM, Goronzy IJ. Giant cell arteritis as an antigen driven disease. Rheum Dis Clin North Am. 1995;21:1027–39.

    CAS  PubMed  Google Scholar 

  16. Ciccia F, Alessandro R, Rizzo A, et al. Difference in the expression of IL-9 and IL-17 correlates with different histological pattern of vascular wall injury in giant cell arteritis. Rheumatology. 2015;54(9):1596–604. doi:10.1093/rheumatology/kev102.

    Article  PubMed  Google Scholar 

  17. Ciccia F, Alessandro R, Rizzo A, et al. IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis. Ann Rheum Dis. 2012;72:258–64.

    Article  PubMed  Google Scholar 

  18. Blom L, Poulsen BC, Jensen BM, Hansen A, Poulsen LK. IL-33 induces IL-9 production in human CD4+ T cells and basophils. PLoS One. 2011;6:e21695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kaplan MH. Th9 cells: differentiation and disease. Immunol Rev. 2013;252:104–15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Krupa WM, et al. Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am J Pathol. 2002;161:1815–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wagner AD, Goronzy JJ, Weyand CM. Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. J Clin Invest. 1994;94:1134–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weyand CM, Hicok CK, Hunder GG, Goronzy JJ. The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen-binding site of the HLA-DR molecule. J Clin Invest. 1992;90:2355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weyand CM, Hunder NN, Hicok CK, et al. HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis and rheumatoid arthritis. Arthritis Rheum. 1993;36:1286–94.

    Article  PubMed  Google Scholar 

  24. Balin H, Abdelmouttaleb I, Belmin J, et al. Arterial wall production of cytokines in giant cell arteritis: results of a pilot study using human temporal artery cultures. J Gerontol A Biol Sci Med Sci. 2002;57:241–5.

    Article  Google Scholar 

  25. Goronzy JJ, Weyand CM. Cytokines in giant-cell arteritis. Cleve Clin J Med. 2002;69:91–4.

    Article  Google Scholar 

  26. Martinez-Taboada VM, Brack A, Hunder GG, Goronzy JJ, Weyand CM. The inflammatory infiltrate in giant cell arteritis selects against B lymphocytes. J Rheumatol. 1996;23(6):1011–4.

    CAS  PubMed  Google Scholar 

  27. Stagnaro C, Cioffi E, Talarico R, Della Rossa A. Systemic vasculitides: a critical digest of the most recent literature. Clin Exp Rheumatol. 2015;33(Suppl 89):S145–54.

    Google Scholar 

  28. Cheng Y, Lv N, Wang Z, Chen B, Danq A. 18F-FDG-PET in assessing disease activity in Takayasu arteritis: a meta-analysis. Clin Exp Rheumatol. 2013;31(Suppl 75):S22–7.

    CAS  PubMed  Google Scholar 

  29. Prieto-Gonzalez S, Garcia-Martinez A, Tavera-Bahillo I, et al. Effect of glucocorticoid treatment on computed tomography angiography detected large-vessel inflammation in giant cell arteritis. A prospective, longitudinal study. Medicine (Baltimore). 2015;94:e486.

    Article  CAS  PubMed Central  Google Scholar 

  30. Blair PA, Norena LY, Flores-Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR, et al. CD19_CD24hiCD38hi B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients. Immunity. 2010;32:129–40.

    Article  CAS  PubMed  Google Scholar 

  31. Harris DP, Haynes L, Sayles PC, Duso DK, Eaton SM, Lepak NM, et al. Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol. 2000;1:475–82.

    Article  CAS  PubMed  Google Scholar 

  32. Iwata Y, Matsushita T, Horikawa M, Dilillo DJ, Yanaba K, Venturi GM, et al. Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood. 2011;117:530–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Geest KS, Abdulahad WH, Chalan P, et al. Disturbed B cell homeostasis in newly diagnosed giant cell arteritis and polymyalgia rheumatic. Arthritis Rheum. 2014;66:1927–38.

    Article  Google Scholar 

  34. Grunewald J, Andersson R, Rydberg L, et al. CD4+ and CD8+ T cell expansions using TCR V and J gene segments at the onset of giant cell arteritis. Arthritis Rheum. 1994;37:1221–7.

    Article  CAS  PubMed  Google Scholar 

  35. Lopez-Hoyos M, Bartolome-Pacheco MJ, Blanco R, et al. Selective T cell receptor decrease in peripheral blood T lymphocytes of patients with polymyalgia rheumatica and giant cell arteritis. Ann Rheum Dis. 2004;63:54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez-Taboada VM, Hunder GG, Weyand CM, Goronzy JJ. Steroid responsiveness of clonal CD8 populations in giant cell arteritis. Arthritis Rheum. 1995;38(Suppl):189.

    Google Scholar 

  37. Weyand CM, Goronzy JJ. Multisystem interactions in the pathogenesis of vasculitis. Curr Opin Rheumatol. 1997;9:3–11.

    Article  CAS  PubMed  Google Scholar 

  38. Dejaco C, Duftner C, Al-Massad J, Wagner AD, Park JK, Fessler J, et al. NKG2D stimulated T-cell autoreactivity in giant cell arteritis and polymyalgia rheumatica. Ann Rheum Dis. 2013;72:e1852–9.

    Article  Google Scholar 

  39. Corbera-Bellalta M, Planas-Rigol E, Lozano E, Terrades-Garcia N, Alba MA, Prieto-Gonzalez S, et al. Blocking interferon gamma reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis. 2015;75:e1177–86.

    Article  Google Scholar 

  40. Samson M, Ly HK, Tournier B, et al. Involvement and prognosis value of CD8(+) T cells in giant cell arteritis. J Autoimmun. 2016;72:73–83. doi:10.1016/j.jaut.2016.05.008.

    Article  CAS  PubMed  Google Scholar 

  41. Esin S, Gul A, Hodara V, et al. Peripheral blood T cells expression in patients with bechcets disease. Clin Exp Immunol. 1997;107:520–7.

    Article  CAS  PubMed  Google Scholar 

  42. Nityanand S, Giscombe R, Srivastava S, et al. A bias in the alpha beta T cell receptor gene usage in Takayasu’s arteritis. Clin Exp Immunol. 1997;107:261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Macchioni P, Boiardi L, Salvarani C, et al. Lymphocyte subpopulations analysis in peripheral blood in polymyalgia rheumatica/giant cell arteritis. Br J Rheumatol. 1993;32:666–70.

    Article  CAS  PubMed  Google Scholar 

  44. Carvalheiro H, da Silva JA, Souto-Carneiro MM. Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun Rev. 2013;12:e401–9.

    Article  Google Scholar 

  45. Gravano DM, Hoyer KK. Promotion and prevention of autoimmune disease by CD8+ T cells. J Autoimmun. 2013;45:e68–79.

    Article  Google Scholar 

  46. Iking-Konert C, Vogl T, Prior B, Wagner C, Sander O, Bleck E, et al. T lymphocytes in patients with primary vasculitis: expansion of CD8+ T cells with the propensity to activate polymorphonuclear neutrophils. Rheumatology (Oxford). 2008;47:e609–16.

    Article  Google Scholar 

  47. Boiardi L, Salvarani C, Macchioni P, et al. CD8+ lymphocyte subsets in active polymyalgia: comparison with elderly-onset and adult rheumatoid arthritis and influence of prednisone therapy. Br J Rheumatol. 1996;35:642–8.

    Article  CAS  PubMed  Google Scholar 

  48. Andersson R, Hansson GK, Soderstrom T, et al. HLA-DR expression in the vascular lesion and circulating T-lymphocytes of patients with giant cell arteritis. Clin Exp Immunol. 1988;73:82–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Banks PM, Cohen MD, Ginsburg WW, Hunder GG. Immunohistologic and cytochemical studies of temporal arteritis. Arthritis Rheum. 1983;26:1201–7.

    Article  CAS  PubMed  Google Scholar 

  50. Dasgupta B, Duke O, Timme AM, et al. Selective depletion and activation of CD8+ lymphocytes form peripheral blood of patients with polymyalgia rheumatica and giant cell arteritis. Ann Rheum Dis. 1989;48:307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Elling P, Olsson A, Elling H. A reduced CD8+ lymphocytes subset distinguishes patients with polymyalgia rheumatica and temporal arteritis form patients with other diseases. Clin Exp Rheumatol. 1998;16:155–60.

    CAS  PubMed  Google Scholar 

  52. Elling P, Olsson A, Elling H. CD8+ T lymphocyte subset in giant cell arteritis and related disorders. J Rheumatol. 1990;17:225–7.

    CAS  PubMed  Google Scholar 

  53. Chelazzi G, Broggini M. Abnormalities of peripheral blood lymphocytes subsets in polymyalgia rheumatica. Clin Exp Rheumatol. 1984;2:333–1136.

    CAS  PubMed  Google Scholar 

  54. Arnold M, Corrigall V, Panayi GS. The sensitivity and specificity of reduced CD8 lymphocyte levels in diagnostic of polymyalgia rheumatica/giant cell arteritis. Clin Exp Rheumatol. 1993;11(6):62–634.

    Google Scholar 

  55. Blažíčková S, Tuchyňová A, Rovenský I, Poprac P. Circulating T cell subpopulations in polymyalgia rheumatica. Zdrav Vestn. 2006;75(Suppl 1):1–8.

    Google Scholar 

  56. Salvarani C, Boiardi L, Macchioni P, et al. Role of peripheral CD8 lymphocytes and soluble IL-2 receptor in predicting the duration of corticosteroid treatment in polymyalgia rheumatica and giant cell arteritis. Ann Rheum Dis. 1995;54:640–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ashmore LM, Shopp GM, Edward BS. Lymphocytes subsets analysis by flow cytometry. Comparison of three different staining techniques and effect of blood storage. J Immunol Methods. 1989;118:209–15.

    Article  CAS  PubMed  Google Scholar 

  58. Bird AG. Monitoring of lymphocytes subpopulation changes in the assessment of HIV infection (editorial review). Genitourin Med. 1990;66:133–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Elling P, Olsson AT, Elling H. Reduced CD8+ T-cell concentration in peripheral blood of patients with carotid artery stenosis: relation to arteritis temporalis. Br J Rheumatol. 1996;35:e649–51.

    Article  Google Scholar 

  60. Regent A, Dib H, Ly KH, Agard C, Tamby MC, Tamas N, et al. Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach. Arthritis Res Ther. 2011;13:R107.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Johansen MK, Elling P, Olsson AT, Elling H. A genetic approach to the pathogenesis of giant cell arteritis. Depletion of CD8+T cells in first-degree relatives of patients with polymyalgia rheumatica and arteritis temporalis. Clin Exp Rheumatol. 1995;13:745–7.

    CAS  PubMed  Google Scholar 

  62. Corrigall VM, Dolan AL, Panay GS. The value of percentage of CD8+ T lymphocyte levels in distinguishing polymyalgia rheumatica from early rheumatoid arthritis. J Rheumatol. 1995;22:1020–4.

    CAS  PubMed  Google Scholar 

  63. Martinez-Taboada VM, Bartolome-Pacheco MJ, Amado JA, et al. Changes in peripheral blood lymphocyte subsets in elderly subjects are associated with an impaired function of the hypophalamic-pituitary-adrenal axis. Mech Ageing Dev. 2002;126:1477–86.

    Article  Google Scholar 

  64. Levine SM, Helmann DB. Giant cell arteritis. Curr Opin Rheumatol. 2001;14:3–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislava Blažíčková Ing., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Blažíčková, S., Rovenský, J., Imrich, R. (2017). Immunocompetent Cells and Their Role in Polymyalgia Rheumatica and Giant Cell Arteritis. In: Rovenský, J., Leeb, B., Štvrtinová, V., Imrich, R. (eds) Polymyalgia Rheumatica and Giant Cell Arteritis. Springer, Cham. https://doi.org/10.1007/978-3-319-52222-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52222-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52221-0

  • Online ISBN: 978-3-319-52222-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics