Skip to main content

A Rapid Heating Method for Press Hardening Processing

  • Conference paper
  • First Online:
Proceedings of the 3rd Pan American Materials Congress

Abstract

The work presents results of investigation on a new heating method for production of high-strength car body elements. It’s proposed to substitute the conventional heating of blanks in gas or electric furnaces through the rapid contact heating. The blank at this process is pressed between two heated plates during few seconds and subsequently quenched in water-cooled dies to obtain high-strength properties due to the martensitic transformation. The influence of heating temperature in the range between 800 and 1000 °C and dwell time from 4 to 16 s on the microstructure and mechanical properties of 1 mm thick sheet of a low alloyed manganese-boron steel was studied. Furthermore, press hardening including common heating in electric furnace at 950 °C during 360 s and quenching in water-cooled dies of the same sheet was performed to compare the resulted microstructure and mechanical properties with the rapid heated and press hardened material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. IPCC. (2014). Summary for policymakers. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, et al. (Eds.), Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.

    Google Scholar 

  2. VDI. (2014). VDI-GME-Studie: Werkstoffinnovationen fuer nachhaltige Mobilitaet und Energieversorgung. Duesseldorf: Verein Deutscher Ingenieure e.V.

    Google Scholar 

  3. Kelkar, A., Roth, R., & Clark, J. (2001). Automobile bodies: Can aluminum be an economical alternative to steel? Journal of the Minerals Metals and Materials Society, 53, 28–32.

    Google Scholar 

  4. Geiger, M., Merklein, M., & Hoff, C. (2005). Basic investigations on the hot stamping steel 22MnB5. AMR, 6–8, 795–804.

    Article  Google Scholar 

  5. Karbasian, H., & Tekkaya, A. E. (2010). A review on hot stamping. Journal of Materials Processing Technology, 210, 2103–2118.

    Article  Google Scholar 

  6. Naganathan, A., & Penter, L. (2012). Hot stamping. In T. Altan & A. E. Tekkaya (Eds.), Sheet metal forming—processes and applications (pp. 133–156). ASM International.

    Google Scholar 

  7. Goetze, U., Zoennchen, S., & Schönherr, J. (2013). Wirtschaftliche Bewertung von Prozesskettenvarianten am Beispiel von Strukturbauteilen. In R. Neugebauer, U. Goetze, & W.-G. Drossel (Eds.), Energetisch-wirtschaftliche Bilanzierung und Bewertung technischer Systeme – Erkenntnisse aus dem Spitzentechnologiecluster eniPROD, Tagungsband zum 1. und 2. Methodenworkshop der Querschnittsarbeitsgruppe 1 “Energetisch-wirtschaftliche Bilanzierung” des Spitzentechnologieclusters eniPROD (pp. 375–394). Auerbach: Wissenschaftliche Scripten.

    Google Scholar 

  8. Rasera, J. N., Daun, K. J., & D’Souza, M. (2014) Direct contact heating for hot forming die quenching. Paper presented at ASME 2014 international mechanical engineering congress and exposition, Montreal, Quebec, Canada, November 14, 2014, p. 8.

    Google Scholar 

  9. Kolleck, R., & Veit, R. (2011). Current and future trends in the field of hot stamping of car body parts. Paper presented at 3rd International Conference on Steels in Cars and Trucks, Salzburg, Austria, June 5–9, 2011, p. 8.

    Google Scholar 

  10. Mori, K., Maki, S., & Tanaka, Y. (2005). Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Annals—Manufacturing Technology, 54, 209–212.

    Article  Google Scholar 

  11. Kolleck, R., Veit, R., Merklein, M., Lechler, J., & Geiger, M. (2009). Investigation on induction heating for hot stamping of boron alloyed steels. CIRP Annals—Manufacturing Technology, 58, 275–278.

    Article  Google Scholar 

  12. Holzweissig, M. J., Lackmann, J., Konrad, S., Schaper, M., & Niendorf, T. (2015). Influence of short austenitization treatments on the mechanical properties of low-alloy steels for hot forming applications. Metallurgical and Materials Transactions A, 46, 3199–3207.

    Article  Google Scholar 

  13. Ploshikhin, V., Prihodovsky, A., Kaiser, J., Bisping, R., Lindner, H., Lengsdorf, C., et al. (2011). New heating technology for the furnace-free press hardening process. Paper presented at Conference “Tools and Technologies for Processing Ultra High Strength Materials”, Graz, Austria, September 19, 2011, p. 8.

    Google Scholar 

  14. Andreiev, A., Grydin, O., & Schaper, M. (2016). Evolution of microstructure and properties of steel 22MnB5 due to short austenitization with subsequent quenching. Steel Research International, 87, 9.

    Article  Google Scholar 

  15. Orlich, J., Rose, A., & Wiest, P. (1973). Atlas for heat treatment of steels (p. 264). Duesseldorf: Verlag Stahleisen M.B.H.

    Google Scholar 

  16. Lolla, T., Cola, G., Narayanan, B., Alexandrov, B., & Babu, S. S. (2011). Development of rapid heating and cooling (flash processing) process to produce advanced high strength steel microstructures. Materials Science and Technology, 27, 863–875.

    Article  Google Scholar 

  17. Loebbe, C., Hering, O., Hiegemann, L., & Tekkaya, A. E. (2016). Setting mechanical properties of high strength steels for rapid hot forming processes. Materials, 219, 19.

    Google Scholar 

  18. Krauss, G. (2001). Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metallurgical and Materials Transactions B, 32B, 205–221.

    Article  Google Scholar 

  19. Speich, G. R., & Leslie, W. C. (1972). Tempering of steel. Metallurgical Transactions, 3, 1043–1054.

    Article  Google Scholar 

  20. Nishibata, T., & Kojima, N. (2013). Effect of quenching rate on hardness and microstructure of hot-stamped steel. Journal of Alloys and Compounds, 577S, 549–554.

    Article  Google Scholar 

  21. Grydin, O., Nuernberger, F., Zou, Y., Schaper, M., & Brosius, A. (2014). Formation and properties of mixed ferritic-martensitic microstructures in the air-hardening steel LH800. Steel Research, 85, 1340–1347.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Innovation, Science and Research of the State of North Rhine-Westphalia for the financial support of the scientific work within the scope of the project “Light—Efficient—Mobile”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatolii Andreiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Andreiev, A., Grydin, O., Schaper, M. (2017). A Rapid Heating Method for Press Hardening Processing. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_72

Download citation

Publish with us

Policies and ethics