Skip to main content

Biotechnologies for Wastewater Treatment in the Mineral Industry

  • Conference paper
  • First Online:
Proceedings of the 3rd Pan American Materials Congress

Abstract

Biotechnological processes are important alternatives for water recycling both in hydrometallurgical and mineral processing operations and this paper is focused on two of such technologies: (i) manganese bioremediation and (ii) sulphate reduction. While high concentrations are related to hydrometallurgical operations or AMD generation, manganese is one of the most difficult metals to remove from wastewaters. It is demonstrated herein that a bacterial consortium enriched from a mine water was able to remove 99.7% Mn2+ from a solution containing 50 mg/L. Molecular studies revealed Stenotrophomonas, Bacillus and Lysinibacillus genera in the sample. Cell metabolism resulted in a pH increase and catalysed chemical Mn2+ oxidation. Subsequently, sulphate reduction by sulphate reducing bacteria (SRB) was addressed. A fluidized bed reactor (FBR), in which there was immobilized biomass along with fluidization enabled a high bacterial population (>109 cells/mL) in the bioreactor and thus a large sulphate reduction efficiency (97%) for a specific sulphate reducing rate of 0.186 ± 0.015 g SO −24 /gVSS.d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akcil, A., & Koldas, S. (2006). Acid mine drainage (AMD): Causes, treatment and case studies. Journal of Cleaner Production, 14(12–13), 1139–1145.

    Article  Google Scholar 

  2. White III, W. W., Lapakko, K. A., & Cox, R. L. (1999). The environmental geochemistry of mineral deposits, part A: Theory and background. In G. S. Plumlee & M. Logsdon (Eds.), Society of Economic Geologists Reviews in Economic Geology (Vol. 7A, pp. 325–338).

    Google Scholar 

  3. Learman, D. R., Wankel, S. D., Webb, S. M., Martinez, N., Madden, A. S., & Hansel, C. M. (2011). Coupled biotic–abiotic Mn(II) oxidation pathway mediates the formation and structural evolution of biogenic Mn oxides. Geochimica et Cosmochimica Acta, 75(20), 6048–6063.

    Article  Google Scholar 

  4. Miyata, N., Tani, Y., Iwahori, K., & Soma, M. (2004). Enzymatic formation of manganese oxides by an Acremonium-like hyphomycete fungus, strain KR21-2. FEMS Microbiology Ecology, 47(1), 101–109.

    Article  Google Scholar 

  5. Postgate, J. R. (1963). Versatile medium for the enumeration of sulfate-reducing bacteria. Applied Microbiology, 11(3), 265–267.

    Google Scholar 

  6. Bertolino, S. M., Melgaço, L. A., Sá, R. G., & Leão, V. A. (2014). Comparing lactate and glycerol as a single-electron donor for sulfate reduction in fluidized bed reactors. Biodegradation, 25(5), 719–733.

    Article  Google Scholar 

  7. von Langen, P. J., Johnson, K. S., Coale, K. H., & Elrod, V. A. (1997). Oxidation kinetics of manganese (II) in seawater at nanomolar concentrations. Geochimica et Cosmochimica Acta, 61(23), 4945–4954.

    Article  Google Scholar 

  8. Morgan, J. J. (2005). Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochimica et Cosmochimica Acta, 69(1), 35–48.

    Article  Google Scholar 

  9. Su, J., Bao, P., Bai, T., Deng, L., Wu, H., Liu, F., et al. (2013). CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS ONE, 8(4), e60573.

    Article  Google Scholar 

  10. Barboza, N. R., Amorim, S. S., Santos, P. A., Reis, F. D., Cordeiro, M. M., Guerra-Sá, R., et al. (2015). Indirect manganese removal by Stenotrophomonas sp. and Lysinibacillus sp. isolated from Brazilian mine water. BioMed Research International, 2015, 14.

    Article  Google Scholar 

  11. Barbosa, L. d. P. (2009). Cultivo de bactérias redutoras de sulfato (BRS) e s ua aplicação na biorremediação de efluentes ácidos contendo metais (Master thesis). Universidade Federal de Ouro Preto (p. 130).

    Google Scholar 

  12. Widdel, F. (1988). Microbiology and ecology of sulfate- and sulfur-reducing bacteria. Biology of anaerobic microorganisms (pp. 469–585). New York: Willey.

    Google Scholar 

  13. Cao, J., Zhang, G., Mao, Z., Fang, Z., & Yang, C. (2008). Presipitation of valuable metal from bioleaching solution by biogenic sulfides. Minerals Engineering, 135(1–3), 40–46.

    Google Scholar 

  14. Barbosa, L. P., Costa, P. F., Bertolino, S. M., Silva, J. C. C., Guerra-Sá, R., Leão, V. A., et al. (2014). Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio. World Journal of Microbiology & Biotechnology, 30(8), 2171–2180.

    Article  Google Scholar 

  15. Bertolino, S. M., Silva, L. A. M., Aquino, S. F., & Leão, V. A. (2015). Comparison of UASB and fluidized-bed reactors for sulfate reduction. Brazilian Journal of Chemical Engineering, 32, 59–71.

    Article  Google Scholar 

  16. INAP. (2003). Treatment of sulphate in mine effluents. International network for acid prevention.

    Google Scholar 

  17. World Health Organization (WHO). (2011). Guidelines for drinking-water quality.

    Google Scholar 

  18. Barton, L. L. (1995). Sulfate-reducing bacteria (Vol. 8, p. 336). New York: Plenum Press.

    Google Scholar 

Download references

Acknowledgements

Funding provided by Vale and the agencies FINEP, CAPES, CNPq and FAPEMIG are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Versiane A. Leão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Barbosa, N.R., Bertolino, S.M., Cota, R.G.S., Leão, V.A. (2017). Biotechnologies for Wastewater Treatment in the Mineral Industry. In: Meyers, M., et al. Proceedings of the 3rd Pan American Materials Congress. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-52132-9_48

Download citation

Publish with us

Policies and ethics