Skip to main content

X-Ray Absorption Spectroscopy: Element-Selective Tools to Characterize Magnetic Nanoparticles

  • Chapter
  • First Online:
Complex Magnetic Nanostructures

Abstract

This chapter describes the capabilities of X-ray absorption spectroscopies—X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and X-ray magnetic circular dichroism (XMCD)—for the characterization of magnetic nanoparticle (NP) systems. These techniques constitute very useful methods for directly and selectively examining the electronic state, magnetic properties, and local structure of atoms composing the particles. An overview of these techniques from the theoretical, technical, and experimental point of view is given. Some examples of how the use of these techniques for the characterization of diverse NP systems has offered unparalleled information about their local structure, and their electronic and magnetic properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more information visit http://www.lightsources.org/.

References

  1. Srajer G, Lewis LH, Bader SD, Epstein AJ, Fadley CS, Fullerton EE, Hoffmann A, Kortright JB, Krishnan KM, Majetich SA, Rahman TS, Ross CA, Salamon MB, Schuller IK, Schulthess TC, Sun JZ (2006) Advances in nanomagnetism via X-ray techniques. J Magn Magn Mater 307:1–31

    Article  Google Scholar 

  2. Figueroa AI (2015) Magnetic nanoparticles. A study by synchrotron radiation and RF transverse susceptibility. Springer Theses, Springer International Publishing AG, Cham

    Book  Google Scholar 

  3. Hollas JM (2004) Modern spectroscopy. Wiley, New York

    Google Scholar 

  4. Hof M (2005) Basics of optical spectroscopy. Wiley, Weinheim

    Google Scholar 

  5. Bunker G (2010) Introduction to XAFS. A practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  6. Conradson S (2000) XAFS. A technique to probe local structure. Los Alamos Sci 26:422

    Google Scholar 

  7. Newville M (2004) Fundamentals of XAFS. University of Chicago, Chicago

    Google Scholar 

  8. van der Laan G, Figueroa AI (2014) X-ray magnetic circular dichroism–a versatile tool to study magnetism. Coord Chem Rev 277–278:95–129

    Article  Google Scholar 

  9. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  10. Schütz G, Knülle M, Wienke R, Wilhelm W, Wagner W, Kienle P, Frahm R (1988) Z Phys B Condens Matter 73(1):67–75

    Article  Google Scholar 

  11. Fano U (1969) Spin orientation of photoelectrons ejected by circularly polarized light. Phys Rev 178:131–136

    Article  Google Scholar 

  12. Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943

    Article  Google Scholar 

  13. Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70:694

    Article  Google Scholar 

  14. Thole BT, van der Laan G (1988) Branching ratio in x-ray absorption spectroscopy. Phys Rev B 38:3158

    Article  Google Scholar 

  15. Chen CT, Idzerda YU, SLin H-J, Smith NV, Meigs G, Chaban E, Ho GH, Pellegrin E, Sette F (1995) Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75:152

    Article  Google Scholar 

  16. Stohr J, König H (1995) Determination of spin- and orbital-moment anisotropies in transition metals by angle-dependent X-ray magnetic circular dichroism. Phys Rev Lett 75:3748–3751

    Article  Google Scholar 

  17. Piamonteze C, Miedema P, de Groot MF (2009) Accuracy of the spin sum rule in XMCD for the transition-metal l edges from manganese to copper. Phys Rev B 80:184410

    Article  Google Scholar 

  18. Bansmann J, Baker SH, Binns C, Blackman JA, Bucher JP, Dorantes Dávila J, Dupuis V, Favre L, Kechrako D, Kleibert A, Meiwes-Broer KH, Pastor GM, Perez A, Toulemonde O, Trohidou KN, Tuaillon J, Xie Y (2005) Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep. 56:189–275

    Article  Google Scholar 

  19. Schmitz-Antoniak C (2015) X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications. Rep Prog Phys 78:062501

    Article  Google Scholar 

  20. López-Ortega A, Estrader M, Salazar-Alvarez G, Roca AG, Nogués J (2015) Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles. Phys Rep 553:1–32

    Article  Google Scholar 

  21. Pearce CI, Qafoku O, Liu J, Arenholz E, Heald SM, Kukkadapu RK, Gorski CA, Henderson CMB, Rosso KM (2012) Synthesis and properties of titanomagnetite (Fe3xTixO4) nanoparticles: a tunable solid-state Fe(II/III) redox system. J Colloid Interface Sci 387:24–38

    Article  Google Scholar 

  22. Ammar S, Jouini N, Fiévet F, Stephan O, Marhic C, Richard M, Villain F, Cartier dit Moulin Ch, Brice S, Sainctavit P (2004) Influence of the synthesis parameters on the cationic distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345–346:658–662

    Google Scholar 

  23. Guyodo Y, Sainctavit P, Arrio MA, Carvallo C, Penn RL, Erbs JJ, Forsberg BS, Morin G, Maillot F, Lagroix F, Bonville P, Wilhelm F, Rogalev A (2012). X-ray magnetic circular dichroism provides strong evidence for tetrahedral iron in ferrihydrite. Geochem Geophys Geosyst 13:Q06Z44

    Google Scholar 

  24. Gilbert B, Katz JE, Denlinger JD, Yin Y, Falcone R, Waychunas GA (2010) Soft X-ray spectroscopy study of the electronic structure of oxidized and partially oxidized magnetite nanoparticles. J Phys Chem C 114:21994–22001

    Article  Google Scholar 

  25. Byrne JM, van der Laan G, Figueroa AI, Qafoku O, Wang C, Pearce CI, Jackson M, Feinberg J, Rosso KM, Kappler A (2016) Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles. Sci Rep 6:30969

    Article  Google Scholar 

  26. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019

    Article  Google Scholar 

  27. Guglieri C, Laguna-Marco MA, Garcia MA, Carmona N, Céspedes E, García-Hernández M, Espinosa A, Chaboy J (2012) XMCD proof of ferromagnetic behavior in ZnO nanoparticles. J Phys Chem C 116(11):6608

    Article  Google Scholar 

  28. Kumar S, Song TK, Gautam S, Chae KH, Kim SS, Jang KW (2015) Structural, magnetic and electronic structure properties of Co doped ZnO nanoparticles. Mater Res Bull 66:76–82

    Article  Google Scholar 

  29. Ge C, Wan X, Pellegrin E, Hu Z, Valvidares M, Barla A, Liang W-I, Chu Y-H, Zoua W, Dua Y (2013) Direct observation of rotatable uncompensated spins in the exchange bias system Co/CoO–MgO. Nanoscale 5:10236

    Article  Google Scholar 

  30. Kaur M, Qiang Y, Jiang W, Pearce C, McCloy JS (2014) Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials. IEEE Trans Magn 50(11):4800305

    Article  Google Scholar 

  31. Juhin A, Lopez-Ortega A, Sikora M, Carvallo C, Estrader M, Estrade S, Peiro F, Baro MD, Sainctavit P, Glatzel P, Nogues J (2014) Direct evidence for an interdiffused intermediate layer in bi-magnetic core–shell nanoparticles. Nanoscale 6:11911

    Article  Google Scholar 

  32. Bartolomé J, Figueroa AI, Bartolomé F, García LM, Wilhelm F, Rogalev A (2013) d-Band magnetism of Ag, Au, Pd and Pt studied with XMCD. Solid State Phenom 194:92–97

    Article  Google Scholar 

  33. Nealon GL, Donnio B, Greget R, Kappler J-P, Terazzi E, Gallani J-L (2012) Magnetism in gold nanoparticles. Nanoscale 4:5244

    Article  Google Scholar 

  34. Bartolomé J, Bartolomé F, García LM, Figueroa AI, Repollé s A, Martínez MJ, Luis F, Magén C, Selenska-Pobell S, Pobell F, Reitz T, Schonemann R, Herrmannsdorfer T, Merroun M, Geissler A, Wilhelm F, Rogalev A (2012). Strong paramagnetism of gold nanoparticles deposited on a Sulfolobus acidocaldarius S layer. Phys Rev Lett 109:247203

    Google Scholar 

  35. Bartolomé J, Bartolomé F, García LM, Roduner E, Akdogan Y, Wilhelm F, Rogalev A (2009) Magnetization of Pt13 clusters supported in a NaY zeolite: a XANES and XMCD study. Phys Rev B 80:014404

    Article  Google Scholar 

  36. Bartolomé J, García LM, Bartolomé F, Luis F, Lopez-Ruiz R, Petroff F, Deranlot C, Wilhelm F, Rogalev A, Bencok P, Brookes NB, Ruiz L, Gonzalez-Calbet JM (2008) Magnetic polarization of noble metals by Co nanoparticles in M-capped granular multilayers (M = Cu, Ag, and Au): an x-ray magnetic circular dichroism study. Phys Rev B 77:184420

    Article  Google Scholar 

  37. Vivas LG, Rubin J, Figueroa AI, Bartolomé F, García LM, Deranlot C, Petroff F, Ruiz L, Gonzalez-Calbet JM, Pascarelli S, Brookes NB, Wilhelm F, Chorro M, Rogalev A, Bartolomé J (2015) Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles. Phys Rev B 93(17), 174410

    Article  Google Scholar 

  38. Antoniak C, Warland A, Darbandi M, Spasova M, Trunova A, Fauth K, Aziz EF, Farle M, Wende H (2010) X-ray absorption measurements on nanoparticle systems: self-assembled arrays and dispersions. J Phys D Appl Phys 43(47):474007

    Article  Google Scholar 

  39. Schmitz-Antoniak C (2013). Characterisation of FePt nanomagnets by X-ray absorption spectroscopy. Phys Status Solidi A 210(7):1298–1304

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the work of all her collaborators and colleagues who have contributed to the subject of magnetic NPs and XAS. In particular, she is grateful to Prof. Juan Bartolome, Dr. Luis Miguel Garcia, and Prof. Gerrit van der Laan for all their support and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana I. Figueroa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Figueroa, A.I. (2017). X-Ray Absorption Spectroscopy: Element-Selective Tools to Characterize Magnetic Nanoparticles. In: Sharma, S. (eds) Complex Magnetic Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-52087-2_5

Download citation

Publish with us

Policies and ethics