Skip to main content

Environmental Enrichment Repairs Structural and Functional Plasticity in the Hippocampus

  • Chapter
  • First Online:
Neurobiological and Psychological Aspects of Brain Recovery

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

In the developing brain, gene-environment interactions shape structure and function in response to experience. In mammals, brain development has been programmed to reach complete maturation after birth to take maximum advantage of appropriate stimulations. In this context, an enriched environment is the best incentive for activity-dependent synaptic plasticity and neurogenesis. The present chapter provides an appraisal of seminal and most recent evidences that environmental enrichment (EE) stimulates the endogenous potential of hippocampus for plasticity and repair. After discussing structural and functional changes induced by EE, we examined the evidence in support to the role of EE as a trigger for intrinsic resilience mechanisms that preserve synaptic integrity in distinct hippocampal neuronal population against aging and neurodegeneration. Finally, according to the potential of EE to boost proliferation and survival of neuronal and glial cells, we explored the hypothesis that the strict temporal organization of critical periods can be challenged by appropriate EE protocols, providing support for sustainable therapeutic interventions on neurological diseases characterized by permanent loss of function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmad-Annuar A, Ciani L, Simeonidis I, Herreros J, Fredj NB, Rosso SB, Hall A, Brickley S, Salinas PC. Signaling across the synapse: a role for Wnt and Dishevelled in presynaptic assembly and neurotransmitter release. J Cell Biol. 2006;174(1):127–39. doi:10.1083/jcb.200511054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altman J, Das GD. Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature. 1964;204:1161–3.

    Article  CAS  PubMed  Google Scholar 

  • Artola A, von Frijtag JC, Fermont PC, Gispen WH, Schrama LH, Kamal A, Spruijt BM. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur J Neurosci. 2006;23(1):261–72. doi:10.1111/j.1460-9568.2005.04552.x.

    Article  PubMed  Google Scholar 

  • Ataman B, Ashley J, Gorczyca M, Ramachandran P, Fouquet W, Sigrist SJ, Budnik V. Rapid activity-dependent modifications in synaptic structure and function require bidirectional Wnt signaling. Neuron. 2008;57(5):705–18. doi:10.1016/j.neuron.2008.01.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek E, Caroni P. beta-Adducin is required for stable assembly of new synapses and improved memory upon environmental enrichment. Neuron. 2011;69(6):1132–46. doi:10.1016/j.neuron.2011.02.034.

    Article  CAS  PubMed  Google Scholar 

  • Bennett EL, Diamond MC, Krech D, Rosenzweig MR. Chemical and anatomical plasticity brain. Science. 1964;146(3644):610–9.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973;232(2):331–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burrows EL, Hannan AJ. Towards environmental construct validity in animal models of CNS disorders: optimizing translation of preclinical studies. CNS Neurol Disord: Drug Targets. 2013;12(5):587–92.

    Article  CAS  Google Scholar 

  • Buschler A, Manahan-Vaughan D. Brief environmental enrichment elicits metaplasticity of hippocampal synaptic potentiation in vivo. Front Behav Neurosci. 2012;6:85. doi:10.3389/fnbeh.2012.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25. doi:10.1146/annurev-neuro-062111-150444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabresi P, Castrioto A, Di Filippo M, Picconi B. New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson’s disease. Lancet Neurol. 2013;12(8):811–21. doi:10.1016/S1474-4422(13)70118-2.

    Article  CAS  PubMed  Google Scholar 

  • Calabresi P, Picconi B, Tozzi A, Ghiglieri V. Interaction between basal ganglia and limbic circuits in learning and memory processes. Parkinsonism Relat Disord. 2016;22(Suppl 1):S65–8. doi:10.1016/j.parkreldis.2015.09.017.

    Article  PubMed  Google Scholar 

  • Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Angelucci F, Petrosini L. Interaction does count: a cross-fostering study on transgenerational effects of pre-reproductive maternal enrichment. Front Behav Neurosci. 2015;9:320. doi:10.3389/fnbeh.2015.00320.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Mancini L, Angelucci F, Petrosini L. Pre-reproductive maternal enrichment influences offspring developmental trajectories: motor behavior and neurotrophin expression. Front Behav Neurosci. 2014;8:195. doi:10.3389/fnbeh.2014.00195.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caroni P, Donato F, Muller D. Structural plasticity upon learning: regulation and functions. Nat Rev Neurosci. 2012;13(7):478–90. doi:10.1038/nrn3258.

    Article  CAS  PubMed  Google Scholar 

  • Cerpa W, Godoy JA, Alfaro I, Farias GG, Metcalfe MJ, Fuentealba R, Bonansco C, Inestrosa NC. Wnt-7a modulates the synaptic vesicle cycle and synaptic transmission in hippocampal neurons. J Biol Chem. 2008;283(9):5918–27. doi:10.1074/jbc.M705943200.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Park CS, Tang SJ. Activity-dependent synaptic Wnt release regulates hippocampal long term potentiation. J Biol Chem. 2006;281(17):11910–6. doi:10.1074/jbc.M511920200.

    Article  CAS  PubMed  Google Scholar 

  • Costa C, Sgobio C, Siliquini S, Tozzi A, Tantucci M, Ghiglieri V, Di Filippo M, Pendolino V, de Iure A, Marti M, Morari M, Spillantini MG, Latagliata EC, Pascucci T, Puglisi-Allegra S, Gardoni F, Di Luca M, Picconi B, Calabresi P. Mechanisms underlying the impairment of hippocampal long-term potentiation and memory in experimental Parkinson’s disease. Brain. 2012;135(Pt 6):1884–99. doi:10.1093/brain/aws101.

    Article  PubMed  Google Scholar 

  • Cummins RA, Walsh RN, Budtz-Olsen OE, Konstantinos T, Horsfall CR. Environmentally-induced changes in the brains of elderly rats. Nature. 1973;243(5409):516–8.

    Article  CAS  PubMed  Google Scholar 

  • Cutuli D, Caporali P, Gelfo F, Angelucci F, Laricchiuta D, Foti F, De Bartolo P, Bisicchia E, Molinari M, Farioli Vecchioli S, Petrosini L. Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates. Front Behav Neurosci. 2015;9:66. doi:10.3389/fnbeh.2015.00066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahlqvist P, Zhao L, Johansson IM, Mattsson B, Johansson BB, Seckl JR, Olsson T. Environmental enrichment alters nerve growth factor-induced gene A and glucocorticoid receptor messenger RNA expression after middle cerebral artery occlusion in rats. Neuroscience. 1999;93(2):527–35.

    Article  CAS  PubMed  Google Scholar 

  • Di Filippo M, de Iure A, Giampa C, Chiasserini D, Tozzi A, Orvietani PL, Ghiglieri V, Tantucci M, Durante V, Quiroga-Varela A, Mancini A, Costa C, Sarchielli P, Fusco FR, Calabresi P. Persistent activation of microglia and NADPH drive hippocampal dysfunction in experimental multiple sclerosis. Sci Rep. 2016;6:20926. doi:10.1038/srep20926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond MC. Response of the brain to enrichment. An Acad Bras Cienc. 2001;73(2):211–20.

    Article  CAS  PubMed  Google Scholar 

  • Diamond MC, Ingham CA, Johnson RE, Bennett EL, Rosenzweig MR. Effects of environment on morphology of rat cerebral cortex and hippocampus. J Neurobiol. 1976;7(1):75–85. doi:10.1002/neu.480070108.

    Article  CAS  PubMed  Google Scholar 

  • Diamond MC, Law F, Rhodes H, Lindner B, Rosenzweig MR, Krech D, Bennett EL. Increases in cortical depth and glia numbers in rats subjected to enriched environment. J Comp Neurol. 1966;128(1):117–26. doi:10.1002/cne.901280110.

    Article  CAS  PubMed  Google Scholar 

  • Donato F, Rompani SB, Caroni P. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature. 2013;504(7479):272–6. doi:10.1038/nature12866.

    Article  CAS  PubMed  Google Scholar 

  • Duffy SN, Craddock KJ, Abel T, Nguyen PV. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learn Mem. 2001;8(1):26–34. doi:10.1101/lm.36301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckert MJ, Bilkey DK, Abraham WC. Altered plasticity in hippocampal CA1, but not dentate gyrus, following long-term environmental enrichment. J Neurophysiol. 2010;103(6):3320–9. doi:10.1152/jn.01037.2009.

    Article  PubMed  Google Scholar 

  • Ehninger D, Kempermann G. Regional effects of wheel running and environmental enrichment on cell genesis and microglia proliferation in the adult murine neocortex. Cereb Cortex. 2003;13(8):845–51.

    Article  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W. Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci. 2001;2(10):704–16. doi:10.1038/35094565.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4(11):1313–7. doi:10.1038/3305.

    Article  CAS  PubMed  Google Scholar 

  • Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156(5):1072–83. doi:10.1016/j.cell.2014.01.044.

    Article  CAS  PubMed  Google Scholar 

  • Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G. Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci. 2009;3:50. doi:10.3389/neuro.22.002.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  • Faherty CJ, Kerley D, Smeyne RJ. A Golgi-Cox morphological analysis of neuronal changes induced by environmental enrichment. Brain Res Dev Brain Res. 2003;141(1–2):55–61.

    Article  CAS  PubMed  Google Scholar 

  • Falkenberg T, Mohammed AK, Henriksson B, Persson H, Winblad B, Lindefors N. Increased expression of brain-derived neurotrophic factor mRNA in rat hippocampus is associated with improved spatial memory and enriched environment. Neurosci Lett. 1992;138(1):153–6.

    Article  CAS  PubMed  Google Scholar 

  • Feng R, Rampon C, Tang YP, Shrom D, Jin J, Kyin M, Sopher B, Miller MW, Ware CB, Martin GM, Kim SH, Langdon RB, Sisodia SS, Tsien JZ. Deficient neurogenesis in forebrain-specific presenilin-1 knockout mice is associated with reduced clearance of hippocampal memory traces. Neuron. 2001;32(5):911–26.

    Article  CAS  PubMed  Google Scholar 

  • Fiala BA, Joyce JN, Greenough WT. Environmental complexity modulates growth of granule cell dendrites in developing but not adult hippocampus of rats. Exp Neurol. 1978;59(3):372–83.

    Article  CAS  PubMed  Google Scholar 

  • Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature. 1996;381(6584):706–9. doi:10.1038/381706a0.

    Article  CAS  PubMed  Google Scholar 

  • Fischer W. Franz Joseph Gall and Johann Kaspar Spurzheim–forerunners of biological psychiatry. Psychiatr Neurol Med Psychol (Leipz). 1984;36(7):433–7.

    CAS  Google Scholar 

  • Foster TC, Dumas TC. Mechanism for increased hippocampal synaptic strength following differential experience. J Neurophysiol. 2001;85(4):1377–83.

    Article  CAS  PubMed  Google Scholar 

  • Foster TC, Gagne J, Massicotte G. Mechanism of altered synaptic strength due to experience: relation to long-term potentiation. Brain Res. 1996;736(1–2):243–50.

    Article  CAS  PubMed  Google Scholar 

  • Francis DD, Diorio J, Plotsky PM, Meaney MJ. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci. 2002;22(18):7840–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frick KM, Fernandez SM. Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging. 2003;24(4):615–26.

    Article  CAS  PubMed  Google Scholar 

  • Gage FH. Mammalian neural stem cells. Science. 2000;287(5457):1433–8.

    Article  CAS  PubMed  Google Scholar 

  • Galimberti I, Gogolla N, Alberi S, Santos AF, Muller D, Caroni P. Long-term rearrangements of hippocampal mossy fiber terminal connectivity in the adult regulated by experience. Neuron. 2006;50(5):749–63. doi:10.1016/j.neuron.2006.04.026.

    Article  CAS  PubMed  Google Scholar 

  • Gibson HE, Reim K, Brose N, Morton AJ, Jones S. A similar impairment in CA3 mossy fibre LTP in the R6/2 mouse model of Huntington’s disease and in the complexin II knockout mouse. Eur J Neurosci. 2005;22(7):1701–12. doi:10.1111/j.1460-9568.2005.04349.x.

    Article  PubMed  Google Scholar 

  • Giralt A, Saavedra A, Alberch J, Perez-Navarro E. Cognitive dysfunction in Huntington’sdDisease: humans, mouse models and molecular mechanisms. J Huntingtons Dis. 2012;1(2):155–73. doi:10.3233/JHD-120023.

    Article  PubMed  Google Scholar 

  • Globus A, Rosenzweig MR, Bennett EL, Diamond MC. Effects of differential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol. 1973;82(2):175–81.

    Article  CAS  PubMed  Google Scholar 

  • Gobbo OL, O’Mara SM. Impact of enriched-environment housing on brain-derived neurotrophic factor and on cognitive performance after a transient global ischemia. Behav Brain Res. 2004;152(2):231–41. doi:10.1016/j.bbr.2003.10.017.

    Article  CAS  PubMed  Google Scholar 

  • Gogolla N, Galimberti I, Deguchi Y, Caroni P. Wnt signaling mediates experience-related regulation of synapse numbers and mossy fiber connectivities in the adult hippocampus. Neuron. 2009;62(4):510–25. doi:10.1016/j.neuron.2009.04.022.

    Article  CAS  PubMed  Google Scholar 

  • Green EJ, Greenough WT. Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro. J Neurophysiol. 1986;55(4):739–50.

    Article  CAS  PubMed  Google Scholar 

  • Greenough WT, Volkmar FR, Juraska JM. Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Exp Neurol. 1973;41(2):371–8.

    Article  CAS  PubMed  Google Scholar 

  • Greenough WT, West RW, DeVoogd TJ. Subsynaptic plate perforations: changes with age and experience in the rat. Science. 1978;202(4372):1096–8.

    Article  CAS  PubMed  Google Scholar 

  • Haber M, Zhou L, Murai KK. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci. 2006;26(35):8881–91. doi:10.1523/JNEUROSCI.1302-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell. 2000;100(5):525–35.

    Article  CAS  PubMed  Google Scholar 

  • Hama H, Hara C, Yamaguchi K, Miyawaki A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron. 2004;41(3):405–15.

    Article  CAS  PubMed  Google Scholar 

  • Hebb DO. The effects of early experience on problem solving at maturity. Am Psychol. 1947;2:306–7.

    Google Scholar 

  • Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463(7278):232–6. doi:10.1038/nature08673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 1997;20(2):78–84.

    Article  CAS  PubMed  Google Scholar 

  • Hirase H, Leinekugel X, Czurko A, Csicsvari J, Buzsaki G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc Natl Acad Sci U S A. 2001;98(16):9386–90. doi:10.1073/pnas.161274398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirase H, Shinohara Y. Transformation of cortical and hippocampal neural circuit by environmental enrichment. Neuroscience. 2014;280:282–98. doi:10.1016/j.neuroscience.2014.09.031.

    Article  CAS  PubMed  Google Scholar 

  • Hodgson JG, Agopyan N, Gutekunst CA, Leavitt BR, LePiane F, Singaraja R, Smith DJ, Bissada N, McCutcheon K, Nasir J, Jamot L, Li XJ, Stevens ME, Rosemond E, Roder JC, Phillips AG, Rubin EM, Hersch SM, Hayden MR. A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron. 1999;23(1):181–92.

    Article  CAS  PubMed  Google Scholar 

  • Holloway RL Jr. Dendritic branching: some preliminary results of training and complexity in rat visual cortex. Brain Res. 1966;2(4):393–6.

    Article  PubMed  Google Scholar 

  • Huang FL, Huang KP, Wu J, Boucheron C. Environmental enrichment enhances neurogranin expression and hippocampal learning and memory but fails to rescue the impairments of neurogranin null mutant mice. J Neurosci. 2006;26(23):6230–7. doi:10.1523/JNEUROSCI.1182-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubel DH, Wiesel TN. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J Neurophysiol. 1963;26:994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN. Effects of monocular deprivation in kittens. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1964;248:492–7.

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 1970;206(2):419–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irvine GI, Abraham WC. Enriched environment exposure alters the input-output dynamics of synaptic transmission in area CA1 of freely moving rats. Neurosci Lett. 2005;391(1–2):32–7. doi:10.1016/j.neulet.2005.08.031.

    Article  CAS  PubMed  Google Scholar 

  • Johansson BB. Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia. Stroke. 1996;27(2):324–6.

    Article  CAS  PubMed  Google Scholar 

  • Jones TA, Greenough WT. Ultrastructural evidence for increased contact between astrocytes and synapses in rats reared in a complex environment. Neurobiol Learn Mem. 1996;65(1):48–56. doi:10.1006/nlme.1996.0005.

    Article  CAS  PubMed  Google Scholar 

  • Juraska JM, Fitch JM, Henderson C, Rivers N. Sex differences in the dendritic branching of dentate granule cells following differential experience. Brain Res. 1985;333(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Schuman EM. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science. 1995;267(5204):1658–62.

    Article  CAS  PubMed  Google Scholar 

  • Kemp A, Manahan-Vaughan D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci. 2007;30(3):111–8. doi:10.1016/j.tins.2007.01.002.

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature. 1997;386(6624):493–5. doi:10.1038/386493a0.

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum C, Wolf OT, May M, Wippich W, Hellhammer DH. Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sci. 1996;58(17):1475–83.

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R, Gorny G. Experience-dependent changes in dendritic arbor and spine density in neocortex vary qualitatively with age and sex. Neurobiol Learn Mem. 2003;79(1):1–10.

    Article  PubMed  Google Scholar 

  • Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol. 2006;199(1):113–21. doi:10.1016/j.expneurol.2005.12.007.

    Article  CAS  PubMed  Google Scholar 

  • Kondo M, Gray LJ, Pelka GJ, Christodoulou J, Tam PP, Hannan AJ. Environmental enrichment ameliorates a motor coordination deficit in a mouse model of Rett syndrome–Mecp2 gene dosage effects and BDNF expression. Eur J Neurosci. 2008;27(12):3342–50. doi:10.1111/j.1460-9568.2008.06305.x.

    Article  PubMed  Google Scholar 

  • Kondo M, Takei Y, Hirokawa N. Motor protein KIF1A is essential for hippocampal synaptogenesis and learning enhancement in an enriched environment. Neuron. 2012;73(4):743–57. doi:10.1016/j.neuron.2011.12.020.

    Article  CAS  PubMed  Google Scholar 

  • Krook-Magnuson E, Szabo GG, Armstrong C, Oijala M, Soltesz I (2014) Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 1 (1). doi:10.1523/ENEURO.0005-14.2014.

  • Kubota Y, Hatada S, Kondo S, Karube F, Kawaguchi Y. Neocortical inhibitory terminals innervate dendritic spines targeted by thalamocortical afferents. J Neurosci. 2007;27(5):1139–50. doi:10.1523/JNEUROSCI.3846-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16(6):2027–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Foster T. Environmental enrichment decreases the afterhyperpolarization in senescent rats. Brain Res. 2007;1130(1):103–7. doi:10.1016/j.brainres.2006.10.037.

    Article  CAS  PubMed  Google Scholar 

  • Laviola G, Hannan AJ, Macri S, Solinas M, Jaber M. Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis. 2008;31(2):159–68. doi:10.1016/j.nbd.2008.05.001.

    Article  PubMed  Google Scholar 

  • Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ. Environmental novelty activates beta2-adrenergic signaling to prevent the impairment of hippocampal LTP by Abeta oligomers. Neuron. 2013;77(5):929–41. doi:10.1016/j.neuron.2012.12.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Tian X, Hartley DM, Feig LA. The environment versus genetics in controlling the contribution of MAP kinases to synaptic plasticity. Curr Biol. 2006;16(23):2303–13. doi:10.1016/j.cub.2006.10.028.

    Article  CAS  PubMed  Google Scholar 

  • Lo KY, Kuzmin A, Unger SM, Petersen JD, Silverman MA. KIF1A is the primary anterograde motor protein required for the axonal transport of dense-core vesicles in cultured hippocampal neurons. Neurosci Lett. 2011;491(3):168–73. doi:10.1016/j.neulet.2011.01.018.

    Article  CAS  PubMed  Google Scholar 

  • Lynch G, Kramar EA, Rex CS, Jia Y, Chappas D, Gall CM, Simmons DA. Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J Neurosci. 2007;27(16):4424–34. doi:10.1523/JNEUROSCI.5113-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makara JK, Losonczy A, Wen Q, Magee JC. Experience-dependent compartmentalized dendritic plasticity in rat hippocampal CA1 pyramidal neurons. Nat Neurosci. 2009;12(12):1485–7. doi:10.1038/nn.2428.

    Article  CAS  PubMed  Google Scholar 

  • Malik R, Chattarji S. Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons. J Neurophysiol. 2012;107(5):1366–78. doi:10.1152/jn.01009.2011.

    Article  PubMed  Google Scholar 

  • McEwen BS. Stress and hippocampal plasticity. Annu Rev Neurosci. 1999;22:105–22. doi:10.1146/annurev.neuro.22.1.105.

    Article  CAS  PubMed  Google Scholar 

  • McEwen BS, Sapolsky RM. Stress and cognitive function. Curr Opin Neurobiol. 1995;5(2):205–16.

    Article  CAS  PubMed  Google Scholar 

  • Milnerwood AJ, Cummings DM, Dallerac GM, Brown JY, Vatsavayai SC, Hirst MC, Rezaie P, Murphy KP. Early development of aberrant synaptic plasticity in a mouse model of Huntington’s disease. Hum Mol Genet. 2006;15(10):1690–703. doi:10.1093/hmg/ddl092.

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AH, Henriksson BG, Soderstrom S, Ebendal T, Olsson T, Seckl JR. Environmental influences on the central nervous system and their implications for the aging rat. Behav Brain Res. 1993;57(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  • Morelli E, Ghiglieri V, Pendolino V, Bagetta V, Pignataro A, Fejtova A, Costa C, Ammassari-Teule M, Gundelfinger ED, Picconi B, Calabresi P. Environmental enrichment restores CA1 hippocampal LTP and reduces severity of seizures in epileptic mice. Exp Neurol. 2014;261:320–7. doi:10.1016/j.expneurol.2014.05.010.

    Article  PubMed  Google Scholar 

  • Morton AJ, Lagan MA, Skepper JN, Dunnett SB. Progressive formation of inclusions in the striatum and hippocampus of mice transgenic for the human Huntington’s disease mutation. J Neurocytol. 2000;29(9):679–702.

    Article  CAS  PubMed  Google Scholar 

  • Moser MB, Trommald M, Andersen P. An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A. 1994;91(26):12673–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser MB, Trommald M, Egeland T, Andersen P. Spatial training in a complex environment and isolation alter the spine distribution differently in rat CA1 pyramidal cells. J Comp Neurol. 1997;380(3):373–81.

    Article  CAS  PubMed  Google Scholar 

  • Murphy KP, Carter RJ, Lione LA, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ. Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington’s disease mutation. J Neurosci. 2000;20(13):5115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H, Kobayashi S, Ohashi Y, Ando S. Age-changes of brain synapses and synaptic plasticity in response to an enriched environment. J Neurosci Res. 1999;56(3):307–15.

    Article  CAS  PubMed  Google Scholar 

  • Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373(6510):109. doi:10.1038/373109a0.

    Article  CAS  PubMed  Google Scholar 

  • Nishida H, Okabe S. Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci. 2007;27(2):331–40. doi:10.1523/JNEUROSCI.4466-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7(9):697–709. doi:10.1038/nrn1970.

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Levis H, Murphy M. Environmental enrichment results in cortical and subcortical changes in levels of synaptophysin and PSD-95 proteins. Neurobiol Learn Mem. 2004;81(3):200–10. doi:10.1016/j.nlm.2004.02.002.

    Article  CAS  PubMed  Google Scholar 

  • Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science. 1996;272(5269):1791–4.

    Article  CAS  PubMed  Google Scholar 

  • Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16(3):250–60. doi:10.1002/hipo.20157.

    Article  CAS  PubMed  Google Scholar 

  • Olsson IA, Sherwin CM. Behaviour of laboratory mice in different housing conditions when allowed to self-administer an anxiolytic. Lab Anim. 2006;40(4):392–9. doi:10.1258/002367706778476389.

    Article  CAS  PubMed  Google Scholar 

  • Onuki Y, Van Someren EJ, De Zeeuw CI, Van der Werf YD. Hippocampal-cerebellar interaction during spatio-temporal prediction. Cereb Cortex. 2015;25(2):313–21. doi:10.1093/cercor/bht221.

    Article  PubMed  Google Scholar 

  • Packard M, Koo ES, Gorczyca M, Sharpe J, Cumberledge S, Budnik V. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Cell. 2002;111(3):319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, Cohen-Salmon M, Benchenane K, Abudara V, Dufour A, Lubke JH, Deglon N, Knott G, Holcman D, Rouach N. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci. 2014;17(4):549–58. doi:10.1038/nn.3662.

    Article  CAS  PubMed  Google Scholar 

  • Passineau MJ, Green EJ, Dietrich WD. Therapeutic effects of environmental enrichment on cognitive function and tissue integrity following severe traumatic brain injury in rats. Exp Neurol. 2001;168(2):373–84. doi:10.1006/exnr.2000.7623.

    Article  CAS  PubMed  Google Scholar 

  • Paton JA, Nottebohm FN. Neurons generated in the adult brain are recruited into functional circuits. Science. 1984;225(4666):1046–8.

    Article  CAS  PubMed  Google Scholar 

  • Pendolino V, Bagetta V, Ghiglieri V, Sgobio C, Morelli E, Poggini S, Branchi I, Latagliata EC, Pascucci T, Puglisi-Allegra S, Calabresi P, Picconi B. l-DOPA reverses the impairment of Dentate Gyrus LTD in experimental parkinsonism via beta-adrenergic receptors. Exp Neurol. 2014;261:377–85. doi:10.1016/j.expneurol.2014.07.006.

    Article  CAS  PubMed  Google Scholar 

  • Pham TM, Hagman B, Codita A, Van Loo PL, Strommer L, Baumans V. Housing environment influences the need for pain relief during post-operative recovery in mice. Physiol Behav. 2010;99(5):663–8. doi:10.1016/j.physbeh.2010.01.038.

    Article  CAS  PubMed  Google Scholar 

  • Pham TM, Soderstrom S, Winblad B, Mohammed AH. Effects of environmental enrichment on cognitive function and hippocampal NGF in the non-handled rats. Behav Brain Res. 1999;103(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  • Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A. 2000a;97(23):12880–4. doi:10.1073/pnas.97.23.12880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci. 2000b;3(3):238–44. doi:10.1038/72945.

    Article  CAS  PubMed  Google Scholar 

  • Restivo L, Ferrari F, Passino E, Sgobio C, Bock J, Oostra BA, Bagni C, Ammassari-Teule M. Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A. 2005;102(32):11557–62. doi:10.1073/pnas.0504984102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds S, Urruela M, Devine DP. Effects of environmental enrichment on repetitive behaviors in the BTBR T + tf/J mouse model of autism. Autism Res. 2013;6(5):337–43. doi:10.1002/aur.1298.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rochefort C, Arabo A, Andre M, Poucet B, Save E, Rondi-Reig L. Cerebellum shapes hippocampal spatial code. Science. 2011;334(6054):385–9. doi:10.1126/science.1207403.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig MR. Environmental complexity, cerebral change, and behavior. Am Psychol. 1966;21(4):321–32.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig MR, Bennett EL. Psychobiology of plasticity: effects of training and experience on brain and behavior. Behav Brain Res. 1996;78(1):57–65.

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig MR, Krech D, Bennett EL, Diamond MC. Effects of environmental complexity and training on brain chemistry and anatomy: a replication and extension. J Comp Physiol Psychol. 1962;55:429–37.

    Article  CAS  PubMed  Google Scholar 

  • Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C. Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci U S A. 2011;108(45):18442–6. doi:10.1073/pnas.1107386108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin RD, Watson PD, Duff MC, Cohen NJ. The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci. 2014;8:742. doi:10.3389/fnhum.2014.00742.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sagi Y, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron. 2012;73(6):1195–203. doi:10.1016/j.neuron.2012.01.025.

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Kobayashi S, Ohashi Y, Igarashi M, Komiya Y, Ando S. Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. J Neurosci Res. 1994;39(1):57–62. doi:10.1002/jnr.490390108.

    Article  CAS  PubMed  Google Scholar 

  • Salinas PC, Zou Y. Wnt signaling in neural circuit assembly. Annu Rev Neurosci. 2008;31:339–58. doi:10.1146/annurev.neuro.31.060407.125649.

    Article  CAS  PubMed  Google Scholar 

  • Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-Menendez C, Arias JL, Begega A. Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learn Mem. 2014;114:16–25. doi:10.1016/j.nlm.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW, Malleret G, David DJ, Monckton JE, Garcia AD, Sofroniew MV, Kandel ER, Santarelli L, Hen R, Drew MR. Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci U S A. 2006;103(46):17501–6. doi:10.1073/pnas.0607207103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sgobio C, Ghiglieri V, Costa C, Bagetta V, Siliquini S, Barone I, Di Filippo M, Gardoni F, Gundelfinger ED, Di Luca M, Picconi B, Calabresi P. Hippocampal synaptic plasticity, memory, and epilepsy: effects of long-term valproic acid treatment. Biol Psychiatry. 2010;67(6):567–74. doi:10.1016/j.biopsych.2009.11.008.

    Article  CAS  PubMed  Google Scholar 

  • Shinohara Y, Hosoya A, Hirase H. Experience enhances gamma oscillations and interhemispheric asymmetry in the hippocampus. Nat Commun. 2013;4:1652. doi:10.1038/ncomms2658.

    Article  CAS  PubMed  Google Scholar 

  • Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington’s disease knockin mice. Proc Natl Acad Sci U S A. 2009;106(12):4906–11. doi:10.1073/pnas.0811228106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder JS, Kee N, Wojtowicz JM. Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J Neurophysiol. 2001;85(6):2423–31.

    Article  CAS  PubMed  Google Scholar 

  • Spalding KL, Bhardwaj RD, Buchholz BA, Druid H, Frisen J. Retrospective birth dating of cells in humans. Cell. 2005;122(1):133–43. doi:10.1016/j.cell.2005.04.028.

    Article  CAS  PubMed  Google Scholar 

  • Spargo E, Everall IP, Lantos PL. Neuronal loss in the hippocampus in Huntington’s disease: a comparison with HIV infection. J Neurol Neurosurg Psychiatry. 1993;56(5):487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner B, Kronenberg G, Jessberger S, Brandt MD, Reuter K, Kempermann G. Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia. 2004;46(1):41–52. doi:10.1002/glia.10337.

    Article  PubMed  Google Scholar 

  • Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8(3):448–60.

    Article  PubMed  Google Scholar 

  • Stummer W, Baethmann A, Murr R, Schurer L, Kempski OS (1995) Cerebral protection against ischemia by locomotor activity in gerbils. Underlying mechanisms. Stroke 26 (8):1423–1429; discussion 1430.

    Google Scholar 

  • Stummer W, Weber K, Tranmer B, Baethmann A, Kempski O. Reduced mortality and brain damage after locomotor activity in gerbil forebrain ischemia. Stroke. 1994;25(9):1862–9.

    Article  CAS  PubMed  Google Scholar 

  • Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci. 2011;31(49):18155–65. doi:10.1523/JNEUROSCI.5289-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavyev Asher YJ, Scaglia F. Molecular bases and clinical spectrum of early infantile epileptic encephalopathies. Eur J Med Genet. 2012;55(5):299–306. doi:10.1016/j.ejmg.2012.04.002.

    Article  PubMed  Google Scholar 

  • Toth LA. The influence of the cage environment on rodent physiology and behavior: Implications for reproducibility of pre-clinical rodent research. Exp Neurol. 2015;270:72–7. doi:10.1016/j.expneurol.2015.04.010.

    Article  PubMed  Google Scholar 

  • Turner AM, Greenough WT. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. 1985;329(1–2):195–203.

    Article  CAS  PubMed  Google Scholar 

  • Usdin MT, Shelbourne PF, Myers RM, Madison DV. Impaired synaptic plasticity in mice carrying the Huntington’s disease mutation. Hum Mol Genet. 1999;8(5):839–46.

    Article  CAS  PubMed  Google Scholar 

  • van Praag H, Kempermann G, Gage FH. Neural consequences of environmental enrichment. Nat Rev Neurosci. 2000;1(3):191–8. doi:10.1038/35044558.

    Article  CAS  PubMed  Google Scholar 

  • Vicedo M. The father of ethology and the foster mother of ducks: Konrad Lorenz as expert on motherhood. Isis. 2009;100(2):263–91.

    Article  PubMed  Google Scholar 

  • Viola GG, Rodrigues L, Americo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Goncalves CA, Xavier LL, Achaval M, Souza DO, Amaral OB. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res. 2009;1274:47–54. doi:10.1016/j.brainres.2009.04.007.

    Article  CAS  PubMed  Google Scholar 

  • Volkmar FR, Greenough WT. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science. 1972;176(4042):1445–7.

    Article  CAS  PubMed  Google Scholar 

  • Walsh RN, Budtz-Olsen OE, Penny JE, Cummins RA. The effects of environmental complexity on the histology of the rat hippocampus. J Comp Neurol. 1969;137(3):361–6. doi:10.1002/cne.901370309.

    Article  CAS  PubMed  Google Scholar 

  • Walsh RN, Cummins RA. Changes in hippocampal neuronal nuclei in response to environmental stimulation. Int J Neurosci. 1979;9(4):209–12.

    Article  CAS  PubMed  Google Scholar 

  • Wang BS, Feng L, Liu M, Liu X, Cang J. Environmental enrichment rescues binocular matching of orientation preference in mice that have a precocious critical period. Neuron. 2013;80(1):198–209. doi:10.1016/j.neuron.2013.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widenfalk J, Olson L, Thoren P. Deprived of habitual running, rats downregulate BDNF and TrkB messages in the brain. Neurosci Res. 1999;34(3):125–32.

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol. 1963;26:1003–17.

    Article  CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH. Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol. 1965;28(6):1060–72.

    Article  CAS  PubMed  Google Scholar 

  • Woo CC, Leon M. Environmental enrichment as an effective treatment for autism: a randomized controlled trial. Behav Neurosci. 2013;127(4):487–97. doi:10.1037/a0033010.

    Article  PubMed  Google Scholar 

  • Wurbel H. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci. 2001;24(4):207–11.

    Article  CAS  PubMed  Google Scholar 

  • Xerri C, Zennou-Azogui Y. Influence of the postlesion environment and chronic piracetam treatment on the organization of the somatotopic map in the rat primary somatosensory cortex after focal cortical injury. Neuroscience. 2003;118(1):161–77.

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Pan F, Gan WB. Stably maintained dendritic spines are associated with lifelong memories. Nature. 2009;462(7275):920–4. doi:10.1038/nature08577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Krook-Magnuson E. Cognitive collaborations: bidirectional functional connectivity between the cerebellum and the hippocampus. Front Syst Neurosci. 2015;9:177. doi:10.3389/fnsys.2015.00177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Wang F, Hu H, Sun X, Kilgard MP, Merzenich MM, Zhou X. Environmental acoustic enrichment promotes recovery from developmentally degraded auditory cortical processing. J Neurosci. 2014;34(16):5406–15. doi:10.1523/JNEUROSCI.5310-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–75. doi:10.1038/nn1629.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Progetto di Ricerca di Interesse Nazionale (PRIN) 2011 (prot. 2010AHHP5H) (to P.C.), Fondazione Cariplo, grant n° 2014-0660 (to P.C.) and Italian Ministry of Education, University and Research, FIRB Call - Program “Futuro in Ricerca” - Project nr RBFR13S4LE_002 (to V.G.), and from the Italian Ministry of Health, Ricerca Finalizzata and Giovani Ricercatori (GR-2010-2316671 to V.G. and RF-2013-02356215 to P.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calabresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ghiglieri, V., Calabresi, P. (2017). Environmental Enrichment Repairs Structural and Functional Plasticity in the Hippocampus. In: Petrosini, L. (eds) Neurobiological and Psychological Aspects of Brain Recovery. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-52067-4_3

Download citation

Publish with us

Policies and ethics