Skip to main content

Location and Weyl Formula for the Eigenvalues of Some Non Self-Adjoint Operators

  • Chapter
  • First Online:
Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 17))

  • 725 Accesses

Abstract

We present a survey of some recent results concerning the location and the Weyl formula for the complex eigenvalues of two non self-adjoint operators. We study the eigenvalues of the generator G of the contraction semigroup e tG, # t ≥ 0, related to the wave equation in an unbounded domain Ω with dissipative boundary conditions on ∂ Ω. Also one examines the interior transmission eigenvalues (ITE) in a bounded domain K obtaining a Weyl formula with remainder for the counting function N(r) of complex (ITE). The analysis is based on a semi-classical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.S. Agranovich, M.I. Vishik, Elliptic problems with a parameter and parabolic problems of general type. (Russian) Uspehi Mat. Nauk 19 (3), 53–161 (1964)

    Google Scholar 

  2. K.Kh. Boimatov, A.G. Kostyuchenko, Spectral asymptotics of nonselfadjoint elliptic systems of differential operators in bounded domains. Matem. Sbornik 181 (12), 1678–1693 (1990) (Russian). English translation: Math. USSR Sbornik 71 (2), 517–531 (1992)

    Google Scholar 

  3. F. Cakoni, H. Haddar, Transmission eigenvalues in inverse scattering theory, in Inverse Problems and Applications: Inside Out. II. Mathematical Sciences Research Institute Publications, vol. 60 (Cambridge University Press, Cambridge/New York, 2013), pp. 529–580

    Google Scholar 

  4. F. Cardoso, G. Popov, G. Vodev, Asymptotics of the number of resonances in the transmission problem. Commun. Partial Differ. Equ. 26, 1811–1859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Colombini, V. Petkov, J. Rauch, Spectral problems for non elliptic symmetric systems with dissipative boundary conditions. J. Funct. Anal. 267, 1637–1661 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Colombini, V. Petkov, J. Rauch, Eigenvalues for Maxwell’s equations with dissipative boundary conditions. Asymptot. Anal. 90 (1–2), 105–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in Semi-classical Limit. London Mathematical Society Lecture Notes Series, vol. 268 (Cambridge University Press, Cambridge/New York, 1999)

    Google Scholar 

  8. M. Hitrik, K. Krupchyk, P. Ola, L. Päivärinta, The interior transmission problem and bounds of transmission eigenvalues. Math. Res. Lett. 18, 279–293 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Lakshtanov, B. Vainberg, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards. J. Phys. A Math. Theor. 45, 125202 (2012)

    Article  MATH  Google Scholar 

  10. P. Lax, R. Phillips, Scattering theory for dissipative systems. J. Funct. Anal. 14, 172–235 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Lax, R. Phillips, Scattering Theory, 2nd edn. (Academic Press, New York, 1989)

    MATH  Google Scholar 

  12. A. Majda, The location of the spectrum for the dissipative acoustic operator. Indiana Univ. Math. J. 25, 973–987 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Petkov, Location of the eigenvalues of the wave equation with dissipative boundary conditions. Inverse Probl. Imaging 10 (4), 1111–1139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Petkov, G. Vodev, Asymptotics of the number of the interior transmission eigenvalues. J. Spectral Theory 7 (2017) (to appear)

    Google Scholar 

  15. V. Petkov, G. Vodev, Localization of the interior transmission eigenvalues for a ball. Inverse Probl. Imaging, 11 (2) (2017). doi: 10.3934/ipi.2017017

  16. H. Pham, P. Stefanov, Weyl asymptotics of the transmission eigenvalues for a constant index of refraction. Inverse Probl. Imaging 8 (3), 795–810 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Robbiano, Counting function for interior transmission eigenvalues. Math. Control Relat. Fields 6 (1), 167–183 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Sylvester, Transmission eigenvalues in one dimension. Inverse Problems 29 (10), 1004009 (2013)

    Google Scholar 

  19. J. Sjöstrand, G. Vodev, Asymptotics of the number of Rayleigh resonances. Math. Ann. 309, 287–306 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Sjöstrand, Weyl law for semi-classical resonances with randomly perturbed potentials. Mémoires de SMF 136, vi+ 144 pp. (2014)

    Google Scholar 

  21. G. Vodev, Transmission eigenvalue-free regions. Commun. Math. Phys. 336, 1141–1166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Vodev, Transmission eigenvalues for strictly concave domains. Math. Ann. 366, 301–336 (2016). doi: 10.1007/s00208-015-1329-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesselin Petkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Petkov, V. (2017). Location and Weyl Formula for the Eigenvalues of Some Non Self-Adjoint Operators. In: Colombini, F., Del Santo, D., Lannes, D. (eds) Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics. Springer INdAM Series, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-52042-1_8

Download citation

Publish with us

Policies and ethics