Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2177))

Abstract

This survey is on classification results for valuations defined on lattice polytopes that intertwine the special linear group over the integers. The basic real valued valuations, the coefficients of the Ehrhart polynomial, are introduced and their characterization by Betke and Kneser is discussed. More recent results include classification theorems for vector and convex body valued valuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alesker, Integrals of smooth and analytic functions over Minkowski’s sums of convex sets, in Convex Geometric Analysis (Berkeley, CA, 1996). Math. Sci. Res. Inst. Publ., vol. 34 (Cambridge University Press, Cambridge, 1999), pp. 1–15

    Google Scholar 

  2. A.I. Barvinok, Computing the Ehrhart polynomial of a convex lattice polytope. Discrete Comput. Geom. 12, 35–48 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. A.I. Barvinok, Integer Points in Polyhedra (European Mathematical Society, Zürich, 2008)

    Book  MATH  Google Scholar 

  4. M. Beck, S. Robins, Computing the Continuous Discretely (Springer, Heidelberg, 2007)

    MATH  Google Scholar 

  5. D. Bernstein, The number of lattice points in integer polyhedra. Funct. Anal. Appl. 10, 223–224 (1976)

    Article  MathSciNet  Google Scholar 

  6. U. Betke, Gitterpunkte und Gitterpunktfunktionale (Habilitationsschrift, Siegen, 1979)

    Google Scholar 

  7. U. Betke, M. Kneser, Zerlegungen und Bewertungen von Gitterpolytopen. J. Reine Angew. Math. 358, 202–208 (1985)

    MathSciNet  MATH  Google Scholar 

  8. U. Betke, P. McMullen, Lattice points in lattice polytopes. Monatsh. Math. 99, 253–265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Blatter, Another proof of Pick’s area theorem. Math. Mag. 70, 200 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. K.J. Böröczky, M. Ludwig, Minkowski valuations on lattices polytopes. J. Eur. Math. Soc., in press, arXiv:1602.01117

    Google Scholar 

  11. F. Breuer, Ehrhart f -coefficients of polytopal complexes are non-negative integers. Electron. J. Comb. 19, Paper 16, 22 pp (2012)

    Google Scholar 

  12. M. Brion, M. Vergne, Lattice points in simple polytopes. J. Am. Math. Soc. 10, 371–392 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Cappell, J. Shaneson, Genera of algebraic varieties and counting of lattice points. Bull. Am. Math. Soc. 30, 62–69 (1994)

    Article  MATH  Google Scholar 

  14. B. Chen, Lattice points, Dedekind sums, and Ehrhart polynomials of lattice polyhedra. Discrete Comput. Geom. 28, 175–199 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. D.A. Cox, J.B. Little, H.K. Schenck, Toric Varieties (American Mathematical Society, Providence, RI, 2011)

    Book  MATH  Google Scholar 

  16. R. Diaz, S. Robins, The Ehrhart polynomial of a lattice polytope. Ann. Math. (2) 145, 503–518 (1997); Erratum: Ann. Math. (2) 146, 237 (1997)

    Google Scholar 

  17. E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  18. W. Fulton, Introduction to Toric Varieties (Princeton University Press, Princeton, NJ, 1993)

    MATH  Google Scholar 

  19. R. Gardner, Geometric Tomography. Encyclopedia of Mathematics and Its Applications, vol. 58, 2nd edn. (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  20. P.M. Gruber, Convex and Discrete Geometry. Grundlehren der Mathematischen Wissenschaften, vol. 336 (Springer, Berlin, 2007)

    Google Scholar 

  21. P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers (North-Holland, Amsterdam, 1987)

    MATH  Google Scholar 

  22. B. Grünbaum, G.C. Shephard, Pick’s theorem. Am. Math. Mon. 100, 150–161 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Haberl, Minkowski valuations intertwining with the special linear group. J. Eur. Math. Soc. 14, 1565–1597 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Haberl, L. Parapatits, The centro-affine Hadwiger theorem. J. Am. Math. Soc. 27, 685–705 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Haberl, L. Parapatits, Moments and valuations. Am. J. Math., 138, 1575–1603 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Haberl, F. Schuster, General L p affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin, 1957)

    Book  MATH  Google Scholar 

  28. H. Hadwiger, R. Schneider, Vektorielle Integralgeometrie. Elem. Math. 26, 49–57 (1971)

    Google Scholar 

  29. M. Henk, M. Tagami, Lower bounds on the coefficients of Ehrhart polynomials. Eur. J. Comb. 30, 70–83 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. T. Hibi, A. Higashitani, A. Tsuchiya, Negative coefficients of Ehrhart polynomials. Preprint, arXiv:1506.00467

    Google Scholar 

  31. K. Jochemko, R. Sanyal, Combinatorial positivity of translation-invariant valuations and a discrete Hadwiger theorem. J. Eur. Math. Soc., in press, arXiv:1505.07440

    Google Scholar 

  32. J.-M. Kantor, A. Khovanskii, Une application du théorème de Riemann-Roch combinatoire au polynôme d’Ehrhart des polytopes entiers de R d. C. R. Acad. Sci. Paris Sér. I Math. 317, 501–507 (1993)

    MathSciNet  Google Scholar 

  33. M. Ludwig, Valuations of polytopes containing the origin in their interiors. Adv. Math. 170, 239–256 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Ludwig, Projection bodies and valuations. Adv. Math. 172, 158–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Ludwig, Minkowski valuations. Trans. Am. Math. Soc. 357, 4191–4213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Ludwig, Minkowski areas and valuations. J. Differ. Geom. 86, 133–161 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Ludwig, Valuations on Sobolev spaces. Am. J. Math. 134, 827–842 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Ludwig, M. Reitzner, SL(n) invariant valuations on polytopes. Discrete Comput. Geom. 57, 571–581 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Ludwig, L. Silverstein, Tensor valuations on lattice polytopes. Preprint, arXiv:1704.07177

    Google Scholar 

  40. E. Lutwak, G. Zhang, Blaschke-Santaló inequalities. J. Differ. Geom. 47, 1–16 (1997)

    Article  MATH  Google Scholar 

  41. E. Lutwak, D. Yang, G. Zhang, L p affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Lutwak, D. Yang, G. Zhang, Moment-entropy inequalities. Ann. Probab. 32, 757–774 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Lutwak, D. Yang, G. Zhang, Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. E. Lutwak, D. Yang, G. Zhang, Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. I.G. Macdonald, Polynomials associated with finite cell-complexes. J. Lond. Math. Soc. 4, 181–192 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  46. P. McMullen, Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. 35, 113–135 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  47. P. McMullen, Isometry covariant valuations on convex bodies. Rend. Circ. Mat. Palermo (2) Suppl. 50, 259–271 (1997)

    Google Scholar 

  48. P. McMullen, Valuations on lattice polytopes. Adv. Math. 220, 303–323 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. L. Parapatits, SL(n)-contravariant L p -Minkowski valuations. Trans. Am. Math. Soc. 366, 1195–1211 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Parapatits, SL(n)-covariant L p -Minkowski valuations. J. Lond. Math. Soc. 89, 397–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. G. Pick, Geometrisches zur Zahlenlehre. Sitzungber. Lotos Prague 19, 311–319 (1899)

    Google Scholar 

  52. J. Pommersheim, Toric varieties, lattice points and Dedekind sums. Math. Ann. 295, 1–24 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. A.V. Pukhlikov, A.G. Khovanskii, Finitely additive measures of virtual polyhedra. St. Petersburg Math. J. 4, 337–356 (1993)

    MathSciNet  Google Scholar 

  54. J.E. Reeve, On the volume of lattice polyhedra. Proc. Lond. Math. Soc. 7, 378–395 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  55. J.E. Reeve, A further note on the volume of lattice polyhedra. J. Lond. Math. Soc. 34, 57–62 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  56. G.T. Sallee, Polytopes, valuations, and the Euler relation. Can. J. Math. 20, 1412–1424 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Schneider, On Steiner points of convex bodies. Isr. J. Math. 9, 241–249 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  58. R. Schneider, Krümmungsschwerpunkte konvexer Körper. II. Abh. Math. Semin. Univ. Hambg. 37, 204–217 (1972)

    Article  MATH  Google Scholar 

  59. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory. Encyclopedia of Mathematics and Its Applications, vol. 151, expanded edn. (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  60. F. Schuster, T. Wannerer, GL(n) contravariant Minkowski valuations. Trans. Am. Math. Soc. 364, 815–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. R.P. Stanley, Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  62. R.P. Stanley, A monotonicity property of h-vectors and h -vectors. Eur. J. Comb. 14, 251–258 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  63. R. Stein, Additivität und Einschließungs-Ausschließungsprinzip für Funktionale von Gitterpolytopen. Ph.D. Thesis, Dortmund (1982)

    Google Scholar 

  64. A. Tsuchiya, Best possible lower bounds on the coefficients of Ehrhart polynomials. Eur. J. Comb. 51, 297–305 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  65. T. Wannerer, GL(n) equivariant Minkowski valuations. Indiana Univ. Math. J. 60, 1655–1672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  66. T. Wannerer, The module of unitarily invariant area measures. J. Differ. Geom. 96, 141–182 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Raman Sanyal for pointing out Corollary 8.4 and its proof to them. They also thank Martin Henk for helpful remarks. The work of Károly J. Böröczky was supported, in part, by the Hungarian Scientific Research Fund No 109789 and No 116451, and the work of Monika Ludwig was supported, in part, by Austrian Science Fund (FWF) Project P25515-N25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Ludwig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Böröczky, K.J., Ludwig, M. (2017). Valuations on Lattice Polytopes. In: Jensen, E., Kiderlen, M. (eds) Tensor Valuations and Their Applications in Stochastic Geometry and Imaging. Lecture Notes in Mathematics, vol 2177. Springer, Cham. https://doi.org/10.1007/978-3-319-51951-7_8

Download citation

Publish with us

Policies and ethics