Skip to main content

Spatial Stream Segregation

  • Chapter
  • First Online:
The Auditory System at the Cocktail Party

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 60))

Abstract

“Stream segregation” refers to a listener’s ability to disentangle interleaved sequences of sounds, such as the ability to string together syllables from one talker in the presence of competing talkers. Spatial separation of sound sources is a key factor that enables the task of segregation. Psychophysical tasks that require listeners to integrate sounds across locations demonstrate that listeners can overcome spatial separation of sources, suggesting that space is a relatively weak segregating factor. Contrary to that suggestion tasks that require listeners to isolate a sound sequence within a complex background demonstrate robust benefits of spatial separation of the target from other sources. This chapter reviews psychophysical studies that show weak versus strong spatial effects on streaming and shows that the spatial acuity of stream segregation can approach the limits of acuity of spatial hearing. Responses from auditory cortex in anesthetized animals are presented demonstrating that single neurons can exhibit spatial stream segregation by synchronizing selectively to one or the other of two interleaved sound sequences. The results from animals imply that perceptually segregated sound sequences are represented in auditory cortex by discrete mutually synchronized neural populations. Human magneto- and electroencephalographic results then are described showing selective enhancement of cortical responses to attended versus unattended sounds. Available results lead to a picture showing bottom-up segregation of sound sources by brainstem mechanisms on the basis of spatial and other cues, followed by top-down selection of particular neural populations that could underlie perceptual auditory objects of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atiani, S., Elhilali, M., David, S. V., Fritz, J. B., & Shamma, S. A. (2009). Task difficulty and performance induce diverse adaptive patterns in gain and shape of primary auditory cortical receptive fields. Neuron, 61, 467–480.

    Article  CAS  PubMed  Google Scholar 

  • Bizley, J. K., Walker, K. M., Silverman, B. W., King, A. J., & Schnupp, J. W. (2009). Interdependent encoding of pitch, timbre, and spatial location in auditory cortex. The Journal of Neuroscience, 29, 2064–2075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehnke, S. E., & Phillips, D. P. (2005). The relation between auditory temporal interval processing and sequential stream segregation examined with stimulus laterality differences. Perception and Psychophysics, 67, 1088–1101.

    Article  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Briley, P. M., Kitterick, P. T., & Summerfield, A. Q. (2013). Evidence for opponent process analysis of sound source location in humans. Journal of the Association for Research in Otolaryngology, 14, 973–983.

    Article  Google Scholar 

  • Broadbent, D. E., & Ladefoged, P. (1957). On the fusion of sounds reaching different sense organs. The Journal of the Acoustical Society of America, 29, 708–710.

    Article  Google Scholar 

  • Brosch, M., & Schreiner, C. E. (1997). Time course of forward masking tuning curves in cat primary auditory cortex. Journal of Neurophysiology, 77, 923–943.

    CAS  PubMed  Google Scholar 

  • Calford, M. B., & Semple, M. N. (1995). Monaural inhibition in cat auditory cortex. Journal of Neurophysiology, 73, 1876–1891.

    CAS  PubMed  Google Scholar 

  • Carl, D., & Gutschalk, A. (2012). Role of pattern, regularity, and silent intervals in auditory stream segregation based on inter-aural time differences. Experimental Brain Research, 224, 557–570.

    Article  PubMed  Google Scholar 

  • Cherry, C. E. (1953). Some experiments on the recognition of speech, with one and two ears. The Journal of the Acoustical Society of America, 25, 975–979.

    Article  Google Scholar 

  • Creutzfeldt, O. D., Hellweg, F. C., & Schreiner, C. (1980). Thalamocortical transformations of responses to complex auditory stimuli. Experimental Brain Research, 39, 87–104.

    Article  CAS  PubMed  Google Scholar 

  • Cutting, J. E. (1976). Auditory and linguistic processes in speech perception: Inferences from six fusions in dichotic listening. Psychological Review, 2, 114–140.

    Article  Google Scholar 

  • Ding, N., Chatterjee, M., & Simon, J. Z. (2013). Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure. NeuroImage, 88, 41–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding, N., & Simon, J. (2012a). Emergence of neural encoding of auditory objects while listening to competing speakers. Proceedings of the National Academy of Sciences of the USA, 109, 11854–11859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, N., & Simon, J. (2012b). Neural coding of continuous speech in auditory cortex during monaural and dichotic listening. Journal of Neurophysiology, 107, 78–89.

    Article  PubMed  Google Scholar 

  • Dingle, R. N., Hall, S. E., & Phillips, D. P. (2010). A midline azimuthal channel in human spatial hearing. Hearing Research, 268, 67–74.

    Article  PubMed  Google Scholar 

  • Duffour-Nikolov, C., Tardif, E., Maeder, P., Thiran, A. B., et al. (2012). Auditory spatial deficits following hemispheric lesions: Dissociation of explicit and implicit processing. Neuropsychological Rehabilitation, 22, 674–696.

    Article  PubMed  Google Scholar 

  • Edmonds, B. A., & Culling, J. F. (2005a). The role of head-related time and level cues in the unmasking of speech in noise and competing speech. Acta Acustica united with Acustica, 91, 546–553.

    Google Scholar 

  • Edmonds, B. A., & Culling, J. F. (2005b). The spatial unmasking of speech: Evidence for within-channel processing of interaural time delay. The Journal of the Acoustical Society of America, 117, 3069–3078.

    Article  PubMed  Google Scholar 

  • Elhilali, M., Ma, L., Micheyl, C., Oxenham, A., & Shamma, S. (2009). Temporal coherence in the perceptual organization and cortical representation of auditory scenes. Neuron, 61, 317–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishman, Y., Reser, D., Arezzo, J., & Steinschneider, M. (2001). Neural correlates of auditory stream segregation in primary auditory cortex of the awake monkey. Hearing Research, 151, 167–187.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, J. B., Elhilali, M., & Shamma, S. A. (2007). Adaptive changes in cortical receptive fields induced by attention to complex sounds. Journal of Neurophysiology, 98, 2337–2346.

    Article  PubMed  Google Scholar 

  • Fritz, J. B., Shamma, S. A., Elhilali, M., & Klein, D. J. (2003). Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neuroscience, 6, 1216–1223.

    Article  CAS  PubMed  Google Scholar 

  • Füllgrabe, C., & Moore, B. C. J. (2012). Objective and subjective measures of pure-tone stream segregation based on interaural time differences. Hearing Research, 291, 24–33.

    Article  PubMed  Google Scholar 

  • Furukawa, S., Xu, L., & Middlebrooks, J. C. (2000). Coding of sound-source location by ensembles of cortical neurons. The Journal of Neuroscience, 20, 1216–1228.

    CAS  PubMed  Google Scholar 

  • Griffiths, T. D., & Warren, J. D. (2004). What is an auditory object? Nature Review of Neuroscience, 5, 887–892.

    Article  CAS  Google Scholar 

  • Harrington, I. A., Stecker, G. C., Macpherson, E. A., & Middlebrooks, J. C. (2008). Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hearing Research, 240, 22–41.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hartmann, W. M., & Johnson, D. (1991). Stream segregation and peripheral channeling. Music Perception, 9, 155–184.

    Article  Google Scholar 

  • Hartmann, W. M., & Rakerd, B. (1993). Auditory spectral discrimination and the localization of clicks in the sagittal plane. The Journal of the Acoustical Society of America, 94, 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  • Hofman, P. M., & Van Opstal, J. A. (1998). Spectro-temporal factors in two-dimensional human sound localization. The Journal of the Acoustical Society of America, 103, 2634–2648.

    Article  CAS  PubMed  Google Scholar 

  • Hukin, R. W., & Darwin, C. J. (1995). Effects of contralateral presentation and of interaural time differences in segregating a harmonic from a vowel. The Journal of the Acoustical Society of America, 98, 1380–1387.

    Article  Google Scholar 

  • Ihlefeld, A., & Shinn-Cunningham, B. (2008a). Spatial release from energetic and informational masking in a selective speech identification task. The Journal of the Acoustical Society of America, 123, 4369–4379.

    Article  PubMed  Google Scholar 

  • Ihlefeld, A., & Shinn-Cunningham, B. (2008b). Disentangling the effects of spatial cues on selection and formation of auditory objects. The Journal of the Acoustical Society of America, 124, 2224–2235.

    Article  PubMed  Google Scholar 

  • Kidd, G., Jr., Best, V., & Mason, C. R. (2008). Listening to every other word: Examining the strength of linkage variables in forming streams of speech. The Journal of the Acoustical Society of America, 124, 3793–3802.

    Article  PubMed  PubMed Central  Google Scholar 

  • King, A. J., & Middlebrooks, J. C. (2011). Cortical representation of auditory space. In J. Winer & C. Schreiner (Eds.), The auditory cortex (pp. 329–341). New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Kuhn, G. F. (1977). Model for the interaural time differences in the azimuthal plane. The Journal of the Acoustical Society of America, 62, 157–167.

    Article  Google Scholar 

  • Lee, C.-C., & Middlebrooks, J. (2011). Auditory cortex spatial sensitivity sharpens during task performance. Nature Neuroscience, 14, 108–114.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C.-C., & Middlebrooks, J. (2013). Specialization for sound localization in fields A1, DZ, and PAF of cat auditory cortex. Journal of the Association for Research in Otolaryngology, 14, 61–82.

    Article  PubMed  Google Scholar 

  • Lomber, S., & Malhotra, S. (2008). Double dissociation of ‘what’ and ‘where’ processing in auditory cortex. Nature Neuroscience, 11, 609–616.

    Article  CAS  PubMed  Google Scholar 

  • Macpherson, E. A., & Middlebrooks, J. C. (2000). Localization of brief sounds: Effects of level and background noise. The Journal of the Acoustical Society of America, 108, 1834–1849.

    Article  CAS  PubMed  Google Scholar 

  • Macpherson, E. A., & Middlebrooks, J. C. (2002). Listener weighting of cues for lateral angle: The duplex theory of sound localization revisited. The Journal of the Acoustical Society of America, 111, 2219–2236.

    Article  PubMed  Google Scholar 

  • Magezi, D. A., & Krumbholz, K. (2010). Evidence of opponent-channel coding of interaural time differences in human auditory cortex. Journal of Neurophysiology, 104, 1997–2007.

    Article  PubMed  PubMed Central  Google Scholar 

  • May, B. J., & Huang, A. Y. (1996). Sound orientation behavior in cats. I. Localization of broadband noise. The Journal of the Acoustical Society of America, 100, 1059–1069.

    Article  CAS  PubMed  Google Scholar 

  • Mesgarani, N., & Chang, E. F. (2012). Selective cortical representation of attended speaker in multi-talker speech perception. Nature, 485, 233–236.

    Article  CAS  PubMed  Google Scholar 

  • Micheyl, C., & Oxenham, A. J. (2010). Objective and subjective psychophysical measures of auditory stream integration and segregation. Journal of the Association for Research in Otolaryngology, 11, 709–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheyl, C., Tian, B., Carlyon, R. P., & Rauschecker, J. P. (2005). Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron, 48, 139–148.

    Article  CAS  PubMed  Google Scholar 

  • Mickey, B. J., & Middlebrooks, J. C. (2003). Representation of auditory space by cortical neurons in awake cats. The Journal of Neuroscience, 23, 8649–8663.

    CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Bremen, P. (2013). Spatial stream segregation by auditory cortical neurons. The Journal of Neuroscience, 33, 10986–11001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks, J. C., Clock, A. E., Xu, L., & Green, D. M. (1994). A panoramic code for sound location by cortical neurons. Science, 264, 842–844.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Green, D. M. (1990). Directional dependence of interaural envelope delays. The Journal of the Acoustical Society of America, 87, 2149–2162.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology, 42, 135–159.

    Article  CAS  PubMed  Google Scholar 

  • Middlebrooks, J. C., & Onsan, Z. A. (2012). Stream segregation with high spatial acuity. The Journal of the Acoustical Society of America, 132, 3896–3911.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, L. M., & Recanzone, G. H. (2009). Populations of auditory cortical neurons can accurately encode acoustic space across stimulus intensity. Proceedings of the National Academy of Sciences of the USA, 106, 5931–5935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, B. C. J., & Gockel, H. (2002). Factors influencing sequential stream segregation. Acta Acustica, 88, 320–332.

    Google Scholar 

  • Moore, B. C. J., & Gockel, H. (2012). Properties of auditory stream formation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 919–931.

    Article  Google Scholar 

  • Phillips, D. P. (2008). A perceptual architecture for sound lateralization in man. Hearing Research, 238, 124–132.

    Article  PubMed  Google Scholar 

  • Pressnitzer, D., Sayles, M., Micheyl, C., & Winter, I. (2008). Perceptual organization of sound begins in the auditory periphery. Current Biology, 18, 1124–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sach, A. J., & Bailey, P. J. (2004). Some characteristics of auditory spatial attention revealed using rhythmic masking release. Perception and Psychophysics, 66, 1379–1387.

    Article  PubMed  Google Scholar 

  • Salminen, N. H., May, P. J., Alku, P., & Tiitinen, H. (2009). A population rate code of auditory space in the human cortex. PLoS ONE, 26, e7600.

    Article  Google Scholar 

  • Saupe, K., Keoelsch, S., & Rubsamen, R. (2010). Spatial selective attention in a complex auditory environment such as polyphonic music. The Journal of the Acoustical Society of America, 127, 472–480.

    Article  PubMed  Google Scholar 

  • Schadwinkel, S., & Gutschalk, A. (2010). Activity associated with stream segregation in human auditory cortex is similar for spatial and pitch cues. Cerebral Cortex, 20, 2863–2873.

    Article  PubMed  Google Scholar 

  • Schreiner, C., & Urbas, J. (1988). Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hearing Research, 32, 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, E. A. G. (1974). Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. The Journal of the Acoustical Society of America, 56, 1848–1861.

    Article  CAS  PubMed  Google Scholar 

  • Snyder, J., & Alain, C. (2007). Toward a neurophysiological theory of auditory stream segregation. Psychological Bulletin, 133, 780–799.

    Article  PubMed  Google Scholar 

  • Stainsby, T. H., Fullgrabe, C., Flanagan, H. J., Waldman, S. K., & Moore, B. C. J. (2011). Sequential streaming due to manipulation of interaural time differences. The Journal of the Acoustical Society of America, 130, 904–914.

    Article  PubMed  Google Scholar 

  • Stecker, G. C., Harrington, I. A., & Middlebrooks, J. C. (2005). Location coding by opponent neural populations in the auditory cortex. PLoS Biology, 3, 520–528.

    Article  CAS  Google Scholar 

  • Stein, B. E., & Meredith, M. A. (1993). The merging of the senses., Cognitive Neuroscience Series Cambridge, MA: MIT Press.

    Google Scholar 

  • Takanen, M., Raitio, T., Santala, O., Alku, P., & Pulkki, V. (2013). Fusion of spatially separated vowel formant cues. The Journal of the Acoustical Society of America, 134, 4508–4517.

    Article  PubMed  Google Scholar 

  • Thiran, A. B., & Clarke, S. (2003). Preserved use of spatial cues for sound segregation in a case of spatial deafness. Neuropsychologia, 41, 1254–1261.

    Article  PubMed  Google Scholar 

  • Tollin, D. J., Populin, L. C., Moore, J. M., Ruhland, J. L., & Yin, T. C. (2005). Sound-localization performance in the cat: The effect of restraining the head. Journal of Neurophysiology, 93, 1223–1234.

    Article  PubMed  Google Scholar 

  • van Noorden, L. P. A. S. (1975). Temporal coherence in the perception of tone sequences. PhD dissertation, Eindhoven: University of Technology.

    Google Scholar 

  • Vliegen, J., Moore, B. C., & Oxenham, A. J. (1999). The role of spectral and periodicity cues in auditory stream segregation, measured using a temporal discrimination task. The Journal of the Acoustical Society of America, 106, 938–945.

    Article  CAS  PubMed  Google Scholar 

  • Wightman, F. L., & Kistler, D. J. (1992). The dominant role of low-frequency interaural time differences in sound localization. The Journal of the Acoustical Society of America, 91, 1648–1661.

    Article  CAS  PubMed  Google Scholar 

  • Woods, T. M., Lopez, S. E., Long, J. H., Rahman, J. E., & Recanzone, G. H. (2006). Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. Journal of Neurophysiology, 96, 3323–3337.

    Article  PubMed  Google Scholar 

  • Woods, W. S., & Colburn, H. S. (1992). Test of a model of auditory object formation using intensity and interaural time difference discrimination. The Journal of the Acoustical Society of America, 91, 2894–2902.

    Article  CAS  PubMed  Google Scholar 

  • Yin, P., Fritz, J. B., & Shamma, S. A. (2014). Rapid spectrotemporal plasticity in primary auditory cortex during behavior. The Journal of Neuroscience, 34, 4396–4408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I thank Georg Klump, Lauren Javier, and Justin Yao for their helpful suggestions on the manuscript. This chapter was completed while the author was a resident fellow at the Hanse-Wissenschaftskolleg in Delmenhorst, Germany. The author’s work is supported by the National Institutes of Health grant R01 DC000420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Middlebrooks .

Editor information

Editors and Affiliations

Ethics declarations

John Middlebrooks has no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Middlebrooks, J.C. (2017). Spatial Stream Segregation. In: Middlebrooks, J., Simon, J., Popper, A., Fay, R. (eds) The Auditory System at the Cocktail Party. Springer Handbook of Auditory Research, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51662-2_6

Download citation

Publish with us

Policies and ethics