Skip to main content

Process Development for Bioactive Peptide Production

  • Chapter
  • First Online:
Food Bioactives

Abstract

Bioactive peptides (BPs) are protein hydrolysates able to induce positive physiological responses when introduced into the body, making them useful ingredients in food, cosmetic and pharmaceutical products. However, the full potential of BPs has not been fully explored because research is still lacking on economical and scalable production methods. This study is therefore aimed at the development of a bioprocess for the production of novel bioactive peptides from food proteins by exploiting fermentative and the proteolytic activities of Lactobacillus delbrueckii subsp. lactis 313 (LDL 313). The optimum parameters and conditions for the production of antihypertensive peptides using LDL 313 were obtained from the literature and covered the upstream, midstream and downstream stages. The feasibility of manufacturing BPs in a large scale was also projected by conducting an economic assessment and a quantitative analysis based on the medical needs of hypertensive patients in Malaysia. Results indicated that to meet the needs of the hypertensive population, a production level of 1.267 kg milk protein/kg peptide had to be obtained at an enzyme requirement of 0.2 kg enzyme/kg milk protein. At this production level and at a peptide market value of USD 88.5/g peptide, the annual expected value of peptide will be USD 41,858,307,460. It will take about 19.5 h to produce one batch of the peptides at a total annual cost (equipment and utilities) of USD 15,081,885. An annual revenue of USD 42 billion is therefore expected from the entire bioprocess implying that the process is economically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29(3):272–277. doi:10.1016/j.biotechadv.2011.01.001

    Article  CAS  Google Scholar 

  • Agyei D, Danquah MK (2012a) Rethinking food-derived bioactive peptides for antimicrobial and immunomodulatory activities. Trends Food Sci Technol 23(2012):62–69. doi:10.1016/j.tifs.2011.08.010

    Article  CAS  Google Scholar 

  • Agyei D, Danquah MK (2012b) Carbohydrate utilization affects Lactobacillus delbrueckii subsp. lactis 313 cell-enveloped-associated proteinase production. Biotechnol Bioprocess Eng 17(4):787–794. doi:10.1007/s12257-012-0106-2

    Article  CAS  Google Scholar 

  • Agyei D, Danquah MK (2012c) In-depth characterisation of Lactobacillus delbrueckii subsp. lactis 313 for growth and cell-envelope-associated proteinase production. Biochem Eng J 64:61–68. doi:10.1016/j.bej.2012.03.006

  • Agyei D, Potumarthi R, Danquah MK (2012) Optimisation of batch culture conditions for cell-envelope-associated proteinase production from Lactobacillus delbrueckii subsp. lactis ATCC® 7830™. Appl Biochem Biotechnol 168:1035–1050. doi:10.1007/s12010-012-9839-9

    Article  CAS  Google Scholar 

  • Agyei D, Lim W, Zass M, Tan D, Danquah MK (2013a) Bioanalytical Evaluation of Lactobacillus delbrueckii subsp. lactis 313 Cell-envelope proteinase extraction. Chem Eng Sci 95(2013):323–330. doi:10.1016/j.ces.2013.03.049

  • Agyei D, Potumarthi R, Danquah, MK (2013b) Production of lactobacilli proteinases for the manufacture of bioactive peptides: part i—upstream processes. In Kim SK (ed) Marine proteins and peptides. Wiley, New York, pp 207–229

    Google Scholar 

  • Agyei D, Potumarthi R, Danquah MK (2013c) Production of lactobacilli proteinases for the manufacture of bioactive peptides: part ii—downstream processes. Mar Proteins Peptides. Wiley, New York, pp 231–251

    Google Scholar 

  • Agyei D, Danquah MK, Sarethy IP, Pan S (2015). Antioxidative peptides derived from food proteins. In: Rani V, Yadav UCS (eds) Free radicals in human health and disease. Springer, India, pp 417–430

    Google Scholar 

  • Aluko R (2008) Bioactive peptides. SciTopics 2012, from http://www.scitopics.com/Bioactive_Peptides.html

  • Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria. Microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 1–66

    Google Scholar 

  • Cicerale S, Conlan XA, Barnett NW, Keast RS (2011) The concentration of oleocanthal in olive oil waste. Nat Prod Res 25(5):542–548. doi:10.1080/14786419.2010.511214

    Article  CAS  Google Scholar 

  • Celenza G (2000) Industrial waste treatment processes engineering: specialized treatment systems, vol 3. CRC Press.

    Google Scholar 

  • Clare DA, Swaisgood HE (2000) Bioactive milk peptides: a prospectus. J Dairy Sci 83(6):1187–1195

    Article  CAS  Google Scholar 

  • Espeche Turbay MB, Savoy de Giori G, Hebert EM (2009) Release of the cell-envelope-associated proteinase of Lactobacillus delbrueckii subspecies lactis CRL 581 is dependent upon pH and temperature. J Agric Food Chem 57(18):8607–8611. doi:10.1021/jf901531q

  • Gul K, Singh AK, Jabeen R (2015) Nutraceuticals and functional foods: the foods for future world. Crit Rev Food Sci Nutr. doi:10.1080/10408398.2014.903384

  • Guo Y, Pan D, Tanokura M (2009) Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology. Food Chem 114(1):328–333. doi:http://dx.doi.org/10.1016/j.foodchem.2008.09.041

  • Gupta R, Beg QK, Khan S, Chauhan B (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60(4):381–395. doi:10.1007/s00253-002-1142-1

    Article  CAS  Google Scholar 

  • Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557. doi:10.1038/nbt1267

    Article  CAS  Google Scholar 

  • Hettiarachchy NS, Kalapathy U (1998) Functional properties of soy proteins. In: Functional properties of proteins and lipids, vol 708. American Chemical Society, New York, pp 80–95

    Google Scholar 

  • Hughes GJ, Ryan DJ, Mukherjea R, Schasteen CS (2011) Protein digestibility-corrected amino acid scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. J Agric Food Chem 59(23):12707–12712. doi:10.1021/jf203220v

    Article  CAS  Google Scholar 

  • Kalogeropoulos N, Tsimidou M (2014) Antioxidants in Greek Virgin Olive Oils. Antioxidants 3(2):387–413

    Article  Google Scholar 

  • Kaushik JK, Kumar A, D RK, Mohanty AK, Grover S, Batish VK, Sechi LA (2009) Functional and probiotic attributes of an indigenous isolate of Lactobacillus plantarum. PLoS ONE 4(12):e8099. doi:10.1371/journal.pone.0008099

    Article  Google Scholar 

  • Khalid NM, Marth EH (1990) Lactobacilli—their enzymes and role in ripening and spoilage of cheese: a review. J Dairy Sci 73(10):2669–2684. doi:10.3168/jds.S0022-0302(90)78952-7

    Article  CAS  Google Scholar 

  • Korhonen H (2009) Milk-derived bioactive peptides: From science to applications. J Funct Foods 1(2):177–187. doi:10.1016/j.jff.2009.01.007

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2003) Food-derived bioactive peptides—opportunities for designing future foods. Curr Pharm Des 9(16):1297–1308. doi:10.2174/1381612033454892

    Article  CAS  Google Scholar 

  • Korhonen H, Pihlanto A (2006) Bioactive peptides: production and functionality. Int Dairy J 16(9):945–960. doi:10.1016/j.idairyj.2005.10.012

    Article  CAS  Google Scholar 

  • Korhonen HJ, Marnila P (2013) Milk bioactive proteins and peptides. In: Milk and dairy products in human nutrition. Wiley, New York, pp 148–171

    Google Scholar 

  • Mahugo Santana C, Sosa Ferrera Z, Esther Torres Padron M, Juan Santana Rodriguez J (2009) Methodologies for the extraction of phenolic compounds from environmental samples: new approaches. Molecules 14(1):298–320. doi:10.3390/molecules14010298

  • Mancebo-Campos V, Salvador MD, Fregapane G (2014) Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 40 °C) as compared to accelerated and antiradical assays. Food Chem 150:374–381. doi:10.1016/j.foodchem.2013.10.162

    Article  CAS  Google Scholar 

  • Ozan Nazim C, Deniz C, Ehsan J (2012) Potential applications of green technologies in olive oil industry. In: Boskou D (ed) Olive oil—constituents, quality, health properties and bioconversions

    Google Scholar 

  • Park SY, Lee J-S, Baek H-H, Lee HG (2010) Purification and characterization of antioxidant peptides from soy protein hydrolysate. J Food Biochem 34:120–132. doi:10.1111/j.1745-4514.2009.00313.x

    Article  Google Scholar 

  • Pihlanto-Leppälä A (2002) MILK PROTEINS|Bioactive peptides. In: Hubert R (ed) Encyclopedia of dairy sciences. Elsevier, Oxford, pp 1960–1967

    Chapter  Google Scholar 

  • Reboredo-Rodríguez P, Rey-Salgueiro L, Regueiro J, González-Barreiro C, Cancho-Grande B, Simal-Gándara J (2014) Ultrasound-assisted emulsification–microextraction for the determination of phenolic compounds in olive oils. Food Chem 150:128–136. doi:10.1016/j.foodchem.2013.10.157

    Article  Google Scholar 

  • Ren X, Pan D, Wu Z, Zeng X, Sun Y, Cao J, Guo Y (2014) Limited hydrolysis of β-casein by cell wall proteinase and its effect on hydrolysates’s conformational and structural properties. Int J Food Sci Technol. doi:10.1111/ijfs.12705

    Google Scholar 

  • Shurtleff W, Aoyagi A (2010) History of soybeans and soyfoods in Southeast Asia (13th century to 2010): extensively annotated bibliography and sourcebook. Soyinfo Center

    Google Scholar 

  • Singh P, Kumar R, Sabapathy SN, Bawa AS (2008) Functional and edible uses of soy protein products. Compr Rev Food Sci Food Safety 7(1):14–28. doi:10.1111/j.1541-4337.2007.00025.x

    Article  CAS  Google Scholar 

  • Vertuani S, Beghelli E, Scalambra E, Malisardi G, Copetti S, Dal Toso R, Manfredini S (2011) Activity and stability studies of verbascoside, a novel antioxidant, in dermo-cosmetic and pharmaceutical topical formulations. Molecules 16(8):7068–7080

    Article  CAS  Google Scholar 

  • Zacharof M-P, Coss GM, Mandale SJ, Lovitt RW (2013) Separation of lactobacilli bacteriocins from fermented broths using membranes. Process Biochem 48(8):1252–1261. doi:http://dx.doi.org/10.1016/j.procbio.2013.05.017

  • Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci 82(10):3192–3196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Danquah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gnasegaran, G.K., Agyei, D., Pan, S., Sarethy, I.P., Acquah, C., Danquah, M.K. (2017). Process Development for Bioactive Peptide Production. In: Puri, M. (eds) Food Bioactives. Springer, Cham. https://doi.org/10.1007/978-3-319-51639-4_4

Download citation

Publish with us

Policies and ethics