Skip to main content

CryoSEM: Revealing Microstructure Development in Drying Coatings

  • Chapter
  • First Online:
Protective Coatings

Abstract

This chapter provides a brief overview of cryogenic scanning electron microscopy (cryoSEM) and how it can be used to characterize wet coating microstructure and its development. As one of the few tools capable of studying wet coating microstructure, cryoSEM reveals transient states in the microstructure that develop as the coating dries. In this chapter, the basic concepts of cryoSEM sample preparation are reviewed including sample vitrification, cryo-fracture, and sublimation. Additionally, several possible artifacts of cryoSEM sample preparation are highlighted and the challenges of image interpretation are discussed. Lastly, several case studies are presented where cryoSEM was used to characterize the microstructure of wet coatings. The examples include: drying-induced gradients in particle concentration, understanding the origin of dry film microstructure from the microstructure of the initial dispersions, and understanding the fundamentals of drying-induced stress development in hard particle coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apkarian, R.P.: High resolution Cryo-SEM in the biological sciences. Microsc. Microanal. 9, 272 (2003)

    Article  Google Scholar 

  2. Bastacky, J., Wodley, C., LaBrie, R., Backhus, C.: A bibliography of low-temperature scanning electron microscopy (LTSEM, Cryo-SEM) and scanning electron microscopy of frozen hydrated biological systems. Scanning. 9, 219–225 (1987)

    Article  Google Scholar 

  3. Erlandsen, S.L., Ottenwaelter, C., Frethem, C., Chen, Y.: Cryo field emission scanning electron microscopy. BioTechniques 31, 300–302, 304–305 (2001)

    Google Scholar 

  4. Wyss, H.M., Hutter, M., Muller, M., Meier, L.P., Gauckler, L.J.: Quantification of microstructure in stable and related suspensions from Cryo-SEM. J. Colloid Interface Sci. 248, 340–346 (2002)

    Article  Google Scholar 

  5. Apkarian, R.P., et al.: In-Lens cryo-high resolution scanning electron microscopy: methodologies for molecular imaging of self-assembled organic hydrogels. Microsc. Microanal. 9, 286–295 (2003)

    Article  Google Scholar 

  6. Vermant, J., Cioccolo, G., Golapan Nair, K., Moldenaers, P.: Coalescence suppression in model immiscible polymer blends by nano-sized colloidal particles. Rheol. Acta. 43, 529–538 (2004)

    Article  Google Scholar 

  7. Prakash, S.S., Francis, L.F., Scriven, L.E.: Microstructure evolution in dry cast cellulose acetate membranes by cryo-SEM. J. Membr. Sci. 283, 328–338 (2006)

    Article  Google Scholar 

  8. Ma, Y., Davis, H.T., Scriven, L.E.: Microstructure development in drying latex coatings. Prog. Org. Coat. 52, 46–62 (2005)

    Article  Google Scholar 

  9. Sutanto, E., Ma, Y., Davis, H.T., Scriven, L.E.: In: Provder, T., Urban, M. (eds.) Film Formation in Coatings: Mechanisms, Properties, and Morphology, p. 174. Oxford University Press, Washington, DC (2001)

    Chapter  Google Scholar 

  10. Gong, X., Davis, H.T., Scriven, L.E.: Role of van Der Waals force in latex film formation. J. Coat. Technol. Res. 5, 271–283 (2008)

    Article  Google Scholar 

  11. Price, K.K., McCormick, A.V., Francis, L.F.: CryoSEM investiration of latex coatings dried in walled substrates. Langmuir. 28, 10329–10333 (2010)

    Article  Google Scholar 

  12. Cardinal, C.M., Jung, Y.D., Ahn, K.H., Francis, L.F.: Drying regime maps for particulate coatings. AIChE J. 56, 2769–2780 (2010)

    Article  Google Scholar 

  13. Roberts, C.C., Francis, L.F.: Drying and cracking of soft latex coatings. J. Coat. Technol. Res. 10, 441–451 (2013)

    Article  Google Scholar 

  14. Luo, H., Scriven, L.E., Francis, L.F.: Cryo-SEM studies of latex/ceramic nanoparticle coating microstructure development. J. Colloid Interface Sci. 316, 500–509 (2007)

    Article  Google Scholar 

  15. Goldstein, J.: Scanning Electron Microscopy and X-Ray Microanalysis: A Text for Biologists, Materials Scientists, and Geologists, p. 820. Plenum Press, New York (1992)

    Book  Google Scholar 

  16. Danilatos, G.D.: Foundations of environmental scanning electron microscopy. Adv. Electronics Electron Phys. 71, 109–250 (1988)

    Article  Google Scholar 

  17. Donald, A.M.: The use of environmental scanning electron microscopy for imaging wet and insulating materials. Nat. Mater. 2, 511–516 (2003)

    Article  Google Scholar 

  18. Meredith, P., Donald, A.M.: Study of ‘wet’ polymer latex systems in environmental scanning electron microscopy: some imaging considerations. J. Microsc. 181, 23–25 (1996)

    Article  Google Scholar 

  19. Price, K., Wu, Y., McCormick, A.V., Francis, L.F.: Stress development in hard particle coatings in the absence of lateral drying. J. Am. Ceram. Soc. 98, 2214–2222 (2015)

    Article  Google Scholar 

  20. Turnbull, D.: Under what conditions can a glass be formed. Contemp. Phys. 10, 473–488 (1969)

    Article  Google Scholar 

  21. Hobbs, P.V.: Ice Physics, p. 837. Clarendon Press, Oxford (1974)

    Google Scholar 

  22. Devireddy, R.V., Leo, P.H., Lowengrub, J.S., Bischof, J.C.: Measurement and numerical analysis of freezing in solutions enclosed in a small container. Int. J. Heat Mass Transf. 45(9), 1915–1931 (2002)

    Article  Google Scholar 

  23. Steinbrecht, R.A., Zierold, D.: Cryotechniques in Biological Electron Microscopy, p. 297. Springer, Berlin (1987)

    Book  Google Scholar 

  24. Angell, C.A., Choi, Y.: Crystallization and vitrification in aqueous systems. J. Microsc. 141, 251–261 (1986)

    Article  Google Scholar 

  25. Severs, N.J., Shotton, D.: Rapid Freezing, Freeze Fracture and Deep Etching, p. 372. Wiley-Liss, New York (1995)

    Google Scholar 

  26. Robards, A.W., Sleytr, U.B.: Low Temperature Methods in Biological Electron Microscopy, p. 551. Elsevier, New York (1985)

    Google Scholar 

  27. Elder, H.Y., Gray, C.C., Jardine, A.D., Chapman, J.N., Biddlecombe, W.H.: Optimum conditions for cryoquenching of small tissue blocks in liquid coolants. J. Microsc. 126, 45–62 (1982)

    Article  Google Scholar 

  28. Ge, H., Suszynski, W.J., Davis, H.T., Scriven, L.E.: New controlled environment vitrification system for preparing wet samples for cryo-SEM. J. Microsc. 229, 115–126 (2008)

    Article  Google Scholar 

  29. Bald, W.B.: Optimizing the cooling block for the quick freeze method. J. Microsc. 131, 11–23 (1983)

    Article  Google Scholar 

  30. Echlin, P.: Low-Temperature Microscopy and Analysis, p. 539. Plenum Press, New York (1992)

    Book  Google Scholar 

  31. Ryan, K.P., Purse, D.H., Robinson, S.G., Wood, J.W.: The relative efficiency of cryogens used for plunge-cooling biological specimens. J. Microsc. 145, 89–96 (1987)

    Article  Google Scholar 

  32. Ge, H.: Microstructure development in latex coatings: high-resolution cryo-scanning electron microscopy. Ph.D. thesis, University of Minnesota, Minneapolis, MN (2005)

    Google Scholar 

  33. Fukuta, N., Gramada, C.M.: Vapor pressure measurement of supercooled water. J. Atmos. Sci. 60, 1871–1875 (2003)

    Article  Google Scholar 

  34. Deegan, R., Bakajin, O., Dupont, T., Huber, G.: Capillary flow as the cause of ring stains from dried liquid drops. Nature. 389, 827–829 (1997)

    Article  Google Scholar 

  35. Chiu, R.C., Cima, M.J.: Drying of granular ceramic films: II, drying stress and saturation uniformity. J. Am. Ceram. Soc. 76, 2769–2777 (1993)

    Article  Google Scholar 

  36. Routh, A.F., Russel, W.B.: Horizontal drying fronts during solvent evaporation from latex films. AIChE J. 44, 2088–2098 (1998)

    Article  Google Scholar 

  37. Sun, J., Velamakanni, B.V., Gerberich, W.W., Francis, L.F.: Aqueous latex/ceramic nanoparticle dispersions: colloidal stability and coating properties. J. Colloid Interface Sci. 280, 387–399 (2004)

    Article  Google Scholar 

  38. Guo, J.J., Lewis, J.A.: Aggregation effects on the compressive flow properties and drying behavior of colloidal silica suspensions. J. Am. Ceram. Soc. 82, 2345–2358 (1999)

    Article  Google Scholar 

  39. Wedin, P., Martinez, C.J., Lewis, J.A., Daicic, J., Bergström, L.: Stress development during drying of calcium carbonate suspensions containing carboxymethylcellulose and latex particles. J. Colloid Interface Sci. 272, 1–8 (2004)

    Article  Google Scholar 

  40. Coussy, O., Dangla, P., Lassabatère, T., Barohel-Bouny, V.: The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Mater. Struct. 37, 15–20 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge support from the National Science Foundation under Award No. CBET 0967348, and the industrial supporters of the Coating Process Fundamentals Program (CPFP), part of the industrial partnership IPrime at the University of Minnesota. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program. Acknowledgments also go to Chris Frethem for all of his contributions to the work presented here. The authors are also grateful to the late Professors L. E. Scriven and H. T. Davis and the past graduate student researchers in CPFP for their pioneering work in developing cryoSEM techniques for coatings characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Price, K., McCormick, A.V., Francis, L.F. (2017). CryoSEM: Revealing Microstructure Development in Drying Coatings. In: Wen, M., Dušek, K. (eds) Protective Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-51627-1_6

Download citation

Publish with us

Policies and ethics