Skip to main content

Role of Distributions in Binders and Curatives and Their Effect on Network Evolution and Structure

  • Chapter
  • First Online:
Protective Coatings

Abstract

Precursors of cross-linked polymer systems are blends of many compounds, some of them forming series (distributions) of compounds of increasing molecular weights, type and number of functional groups, or some other property. The distributions may arise from impurities in the raw materials, or a result of side reactions. In most cases, the distributions are generated intentionally; functional copolymers, hyperbranched polymers, off-stoichiometric highly branched polymers, chain extended systems, or precursors prepared in several stages can serve as examples. The distributions affect processing and materials properties. We show ways to generate these distributions from bond formation kinetics and reaction mechanisms. Statistical branching theories based on assemblage of branched molecules and gel structure from building units in different reaction states are used to model the evolution of the cross-linked system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The recursive Eqs. (1.13) express the structure growth through repetition of progressive adding of building units. By solving these equations with respect to u XY and inserting the solution into Eq. (1.12) one obtains the description, in the form of generating functions, of fractions of all possible molecules differing in the number of building units and unreacted functional groups. Description of these multiplicative processes by such recursive equations (also called cascade substitution) is the standard procedure employed in the statistical branching theories. It corresponds to the first-order Markov process controlled by transition probabilities.

References

  1. Dušek, K.: Network formation in curing of epoxy resins. Adv. Polym. Sci. 78, 1 (1986). doi:10.1007/BFb0051042

    Article  Google Scholar 

  2. Bauer, D.R., Dickie, R.: Crosslinking chemistry and network structure in organic coatings. I. Cure of melamine formaldehyde/acrylic copolymer films. J. Polym. Sci. B Polym. Phys. 18, 1997–2014 (1980). doi:10.1002/pol.1980.180181001

    Article  Google Scholar 

  3. Bauer, D.R., Dickie, R.A.: Crosslinking chemistry and network structure in organic coatings. II. Effect of catalysts on cure of melamine formaldehyde/acrylic copolymer films. J. Polym. Sci. B Polym. Phys. 18, 2015–2025 (1980). doi:10.1002/pol.1980.180181002

    Article  Google Scholar 

  4. Computer Applications in Applied Polymer Science II. Automation, Modeling, Simulation. In: Provder, T. (ed.). ACS Symposium Series 404 (1989). ISBN: 13: 9780841216624

    Google Scholar 

  5. Dušek, K., Šomvársky, J.: Network formation and their application to systems of industrial importance. In: Aharoni, S., (ed.) Synthesis, Characterization and Theory of Polymeric Networks and Gels, pp. 283–301. Plenum Press, New York (1992). ISBN: 0306443066, 9780306443060

    Google Scholar 

  6. Dušek, K., Dušková-Smrčková, M., Lewin, L.A., Huybrechts, J., Barsotti, R.J.: Branching theories and thermodynamics used to help designing precursor architectures and binder systems. Surf. Coat. Int. B: Coat. Trans. 82, 121–131 (2006). doi:10.1007/BF02699642

    Google Scholar 

  7. Huybrechts, J., Dušek, K.: Star oligomers for low VOC polyurethane coatings. Surf. Coat. Int. 81, 117–127 (1998). doi:10.1007/BF02693852

    Article  Google Scholar 

  8. Huybrechts, J., Dušek, K.: Star oligomers with different reactivity in low VOC polyurethane coatings: part II. Surf. Coat. Int. 82, 172–177 (1998). doi:10.1007/BF02693857

    Article  Google Scholar 

  9. Huybrechts, J., Dušek, K.: Star oligomers and hyperbranched polymers in low VOC polyurethane coatings: part III. Surf. Coat. Int. 82, 234–239 (1998). doi:10.1007/BF02693865

    Article  Google Scholar 

  10. Matějka, L., Dušek, K., Chabanne, P., Pascault, J.-P.: Cationic polymerization of diglycidyl ether of bisphenol A. 2. Theory. J. Polym. Sci. A Polym. Chem. 35, 651–663 (1997). doi:10.1002/(SICI)1099-0518(199703)35:4<651::AID-POLA7>3.3.CO;2-N

    Article  Google Scholar 

  11. Chivukula, P., Dušek, K., Wang, D., Dušková-Smrčková, M., Kopečková, P., Kopeček, J.: Synthesis and characterization of novel aromatic azo bond-containing, pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials. 27, 1140–1151 (2006). doi:10.1016/j.biomaterials.2005.07.02

    Article  Google Scholar 

  12. Wang, D., Dušek, K., Kopečková, P., Dušková-Smrčková, M., Kopeček, J.: Novel aromatic azo-containing pH-sensitive hydrogels: synthesis and characterization. Macromolecules. 35, 7791–7803 (2002). doi:10.1021/ma020745k

    Article  Google Scholar 

  13. Dušek, K., Dušková-Smrčková, M.: Modeling of polymer network formation from preformed precursors. Macromol. React. Eng. 6, 426–445 (2012). doi:10.1002/mren.201200028

    Article  Google Scholar 

  14. Dušek, K., Netopilík, M., Kratochvíl, P.: Nonuniformities of distributions of molecular weights of grafted polymers. Macromolecules. 45, 3240–3246 (2012). doi:10.1021/ma3000187

    Article  Google Scholar 

  15. Dušková-Smrčková, M., Valentová, H., Ďuračková, A., Dušek, K.: Effect of dilution on structure and properties of polyurethane networks. Pregel and postgel cyclization and phase separation. Macromolecules. 43, 6450–6462 (2010). doi:10.1021/ma100626d

    Article  Google Scholar 

  16. Ilavský, M., Dušek, K.: The structure and elasticity of polyurethane networks. I. Model networks from poly(oxypropylene) triols and diisocyanate. Polymer. 24, 981–990 (1983). doi:10.1016/0032-3861(83)90148-9

    Article  Google Scholar 

  17. Dušek, K., Dušková-Smrčková, M., Huybrechts, J., Ďuračková, A.: Polymer networks from preformed precursors having molecular weight and group reactivity distributions. Theory and application. Macromolecules. 46, 2767–2784 (2013). doi:10.1021/ma302396u

    Article  Google Scholar 

  18. Dušek, K., Dušková-Smrčková, M., Fedderly, J.J., Lee, G.F., Lee, J.D., Hartmann, B.: Polyurethane networks with controlled architecture of dangling chains. Macromol. Chem. Phys. 203, 1936–1948 (2002). doi:10.1002/1521-3935(200209)203:13<1936::AID-MACP1936>3.0.CO;2-C

    Article  Google Scholar 

  19. Dušek, K., Dušková-Smrčková, M., Voit, B.: Highly-branched off-stoichiometric functional polymers as polymer networks precursors. Polymer. 46, 4265–4282 (2005). doi:10.1016/j.polymer.2005.02.037

    Article  Google Scholar 

  20. Dušek, K., Scholtens, B.J.R., Tiemersma-Thoone, G.P.J.M.: Theoretical treatment of network formation by a multistage process. Polym. Bull. 17, 239–245 (1987). doi:10.1007/BF00285356

    Article  Google Scholar 

  21. Tiemersma-Thoone, G.P.J.M., Scholtens, B.J.R., Dušek, K., Gordon, M.: Theories for network formation in multi-stage processes. J. Polym. Sci. B Polym. Phys. 29, 463–482 (1991). doi:10.1002/polb.1991.090290409

    Article  Google Scholar 

  22. Dušek, K.: Applicability of statistical theories of network formation. Macromol. Symp. 256, 18–27 (2007). doi:10.1002/masy.20075100

    Article  Google Scholar 

  23. Dušek, K., Dušková-Smrčková, M.: Network structure formation during crosslinking of organic coating systems. Prog. Polym. Sci. 25, 1215–1260 (2000). doi:10.1016/S0079-6700(00)00028-9

    Article  Google Scholar 

  24. Dušek, K., Dušková-Smrčková, M.: Polymer networks. In: Matyjaszewski, K., Gnanou, P., Leibler, L., (eds.) Macromolecular Engineering. Precise Synthesis, Materials Properties, Applications, vol. 3, Structure–Property Correlation and Characterization Techniques, pp. 1687–1730. Wiley, Weinheim (2007). ISBN: 978-3-527-31446-1

    Google Scholar 

  25. Ni, H., Aaserud, D.J., Simonsick Jr., W.J., Soucek, M.D.: Preparation and characterization of alkoxysilane functionalized isocyanurates. Polymer. 41, 57–71 (2000). doi:10.1016/S0032-3861(99)00160-3

    Article  Google Scholar 

  26. Dušek, K., Dušková-Smrčková, M., Huybrechts, J.: Control of performance of nanostructured polymer network precursors by differences in reactivity of functional groups. J. Nanostruct. Polym. Nanocomposites. 1, 45–53 (2005)

    Google Scholar 

  27. Dušek, K., Špírková, M., Havlíček, I.: Network formation in polyurethanes due to side reactions. Macromolecules. 23, 1774 (1990). doi:10.1021/ma00208a036

    Article  Google Scholar 

  28. Hult, A., Johansson, M., Malmström, E.: Hyperbranched polymers. Adv. Polym. Sci. 143, 1–34 (1999). doi:10.1007/3-540-49780-3_1

    Article  Google Scholar 

  29. Johansson, M., Glauser, T., Jansson, A., Hult, A., Malmström, E., Claesson, H.: Design of coating resins by changing the macromolecular architecture: solid and liquid coating systems. Prog. Org. Coat. 48, 194–200 (2003). doi:10.1016/S0300-9440(03)00105-X

    Article  Google Scholar 

  30. van Benthem, R.A.T.M.: Novel hyperbranched resins for coating applications. Prog. Org. Coat. 40, 203–214 (2000). doi:10.1016/S0300-9440(00)00122-3

    Article  Google Scholar 

  31. Dušek, K., Dušková-Smrčková, M.: Formation, structure and properties of the crosslinked state in relation to precursor architecture. In: Fréchet, J.M.J., Tomalia, D.A. (eds.) Dendrimers and Other Dendritic Polymers. Wiley (2011); Tomalia, D.A., Fréchet, J.M.J. (eds.) Dendritic Polymers, pp. 111–145. Wiley (2002). ISBN: 978-0-471-63850-6

    Google Scholar 

  32. Müller, A.H.E., Yan, D., Wulkow, M.: Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization. 1. Molecular weight distribution. Macromolecules. 30, 7015–1723 (1997). doi:10.1021/ma9619187

    Article  Google Scholar 

  33. Zhou, Z., Yan, D.: Distribution function of hyperbranched polymers formed by AB2 type polycondensation with substitution effect. Polymer. 47, 1473–1479 (2006). doi:10.1016/j.polymer.2005.12.035

    Article  Google Scholar 

  34. Zhou, Z., Yan, D.: Kinetic theory of hyperbranched polymerization. In: Yan, D., Gao, C., Frey, H. (eds.) Hyperbranched Polymers: Synthesis, Properties, and Applications. Wiley, Hoboken (2001). doi:10.1002/9780470929001.ch13

    Google Scholar 

  35. Dušek, K., Šomvársky, J., Smrčková, M., Simonsick Jr., W.J., Wilczek, L.: Role of cyclization in the degree-of-polymerization distribution of hyperbranched polymers. Modelling and experiment. Polym. Bull. 42, 489–496 (1999). doi:10.1007/s002890050493

    Article  Google Scholar 

  36. Dušek, K., Dušková-Smrčková, M.: Polymer networks from precursors of defined architecture. Activation of pre-existing branch points. Macromolecules. 36, 2915–2925 (2003). doi:10.1021/ma021666b

    Article  Google Scholar 

  37. Bruchmann, B., Schrepp, W.: The AA* + B*B2 approach. A simple and convenient synthetic strategy towards hyperbranched polyurea-urethanes. e-Polymers. 3(1), 191–200 (2003). doi:10.1515/epoly.2003.3.1.191

  38. Voit, B.: Hyperbranched polymers—all problems solved after 15 years of research? J. Polym. Sci. A Polym. Chem. 43, 2679–2699 (2005). doi:10.1002/pola.20821

  39. Dušek, K.: Build-up of polymer network by initiated polyreactions. 2. Theoretical treatment of polyetherification released by polyamine|polyepoxide addition. Polym. Bull. 13, 321–328 (1985). doi:10.1007/BF00262115

    Article  Google Scholar 

  40. Dušek, K., Šomvársky, J., Ilavský, M.: Network build-up by initiated polyreactions. 4. Derivation of postgel parameters for postetherification in diamine-diepoxide curing. Polym. Bull. 18, 209 (1987). doi:10.1007/BF00255112

    Article  Google Scholar 

  41. Witte, F.M., Goemans, C.D., van der Linde, R., Stanssens, D.A.: The aliphatic oxirane powder coating system: development, crosslinking chemistry and coating properties. Prog. Org. Coat. 32, 241–251 (1997). doi:10.1016/S0300-9440(97)00066-0

    Article  Google Scholar 

  42. Carmesin, I., Kremer, K.: The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules. 21, 2819–2823 (1988). doi:10.1021/ma00187a030

    Article  Google Scholar 

  43. Polanowski, P., Jeszka, J.K., Krysiak, K., Matyjaszewski, K.: Influence of intramolecular crosslinking on gelation in living copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies. Polymer. 79, 171–178 (2015). doi:10.1016/j.polymer.2015.10.018

    Article  Google Scholar 

  44. Kroll, D.M., Croll, S.G.: Influence of crosslinking functionality, temperature and conversion on heterogeneities in polymer networks. Polymer. 79, 82–90 (2015). doi:10.1016/j.polymer.2015.10.020

  45. Fortunatti, C., Sarmoria, C., Brandolin, A.  Asteasuain, M.: Modeling of RAFT polymerization using probability generating functions. Detailed prediction of full molecular weight distributions and sensitivity analysis. Macromol. React. Eng. 8, 781-795 (2014). doi: 10.1002/mren.201400020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Dušek .

Editor information

Editors and Affiliations

Appendix

Appendix

Definitions of Distributions and Their Transform Using the Formalism of Probability Generating Functions

In the following tables, the degree of polymerization, molecular weight, and functionality distributions and their averages are defined and expressed in the form of probability generating functions (pgf). The transform between various distributions and their averages by manipulation with the pgfs is also shown.

Probability Generating Functions

This communication deals with various distributions related to properties of the precursors, and often they are multivariate. To keep track of what property we are dealing with, the distributions are post-signed by labels and presented in the form of probability generating functions. They have been used for description of branching and cross-linking systems since a long time ago, and their formulation and use have been repeatedly explained (cf., e.g., Refs. [1, 14, 45]). Nevertheless, some explaining notes about their use are summarized below.

As examples, the following distributions in the form probability generating functions are discussed:

$$ \begin{array}{l}A(Z)={\sum}_i{a}_i{Z}^i,\kern1em {\sum}_i{a}_i=1\\ {}N(Z)={\sum}_i{n}_i{Z}^i,\kern1em W(Z)={\sum}_i{w}_i{Z}^i,\kern1em {\sum}_i{n}_i={\sum}_i{w}_i=1\\ {}Q(\mathbf{Z},\mathbf{z})={\sum}_{i,j}{q}_{ij}{Z}_{\mathrm{A}}^{X_{\mathrm{A}}}{Z}_{\mathrm{B}}^{X_{\mathrm{B}}}{z}_{\mathrm{A}\mathrm{B}}^i{z}_{\mathrm{B}\mathrm{A}}^j,\kern1em Z={Z}_{\mathrm{A}},{Z}_{\mathrm{B}},\kern1em z={z}_{\mathrm{A}\mathrm{B}}{z}_{\mathrm{B}\mathrm{A}},\kern1em {\sum}_{i,j}{q}_{ij}=1\end{array} $$

The function A(Z) describes a set of probabilities a = a 1, a 2, …,  a i ,…,  a n of finding the object A in all its possible states distinguished by the value i of a property. In the function N(Z), the property is degree of polymerization, and its value is characterized by the exponent i, related is the set of number fractions n; for the function W(Z), the property is also the degree of polymerization, and the related probability is the set of weight fractions w. Boldface quantities are vectors like a above. The function Q(Z, z) describes the probabilities of finding the building unit Q in states characterized by the properties X A and X B and by number of bonds i of AB bonds and j of BA bonds. Z and z are auxiliary variables of the pgfs; by manipulation with them, one can transform them from one to another and to get average values of the property, as will be shown below. The average value is obtained by differentiation and putting the auxiliary variable equal to 1; for example,

$$ \frac{\partial N(Z)}{\partial Z}={\sum}_i{ i n}_i{Z}^i,\kern1em {\left[\frac{\partial N(Z)}{\partial Z}\right]}_{Z=1}={\sum}_i{ i n}_i={P}_{\mathrm{n}} $$

Degree of Polymerization and Molecular Weight Distributions

Averages

Probability generating function formulation

Number-average degree of polymerization, P xn, and molecular weight, M xn, of homopolymer X

\( \begin{array}{l} N(Z)={\sum}_i{n}_i{Z}^i\\ {}\frac{\partial N(Z)}{\partial Z}={\sum}_i{ i n}_i{Z}^{i-1}\kern1em {\left[\frac{\partial N(Z)}{\partial Z}\right]}_{Z=1}\equiv N^{\prime }(1)={\sum}_i{ i n}_i={P}_{\mathrm{Xn}}\\ {}{N}_{\mathrm{M}}(Z)={\sum}_i{n}_i{Z}^{i M}\\ {}\frac{\partial {N}_{\mathrm{M}}(Z)}{\partial Z}={\sum}_i{ i n}_i{ M Z}^{i M-1}\\ {}{\left[\frac{\partial {N}_{\mathrm{M}}(Z)}{\partial Z}\right]}_{Z=1}\equiv N{\prime}_M(1)={\sum}_i{ i n}_i M={P}_{\mathrm{Xn}}\end{array} \)

\( \begin{array}{l}{P}_{\mathrm{X}\mathrm{n}}={\sum}_i{ i n}_i\\ {}{M}_{\mathrm{X}\mathrm{n}}={\sum}_i{ i n}_i{M}_{\mathrm{x}}={M}_{\mathrm{X}}{\sum}_i{ i n}_i\end{array} \)

w-Average (weight-average) degree of polymerization P Xw and molecular weight M xw of homopolymer X

\( \begin{array}{l} W(Z)={\sum}_i{w}_i Z^{\prime }= Z\frac{\partial N(Z)}{\partial Z}/{\left[\frac{\partial N(Z)}{\partial Z}\right]}_{Z=1}\\ {}\frac{\partial W(Z)}{\partial Z}={\sum}_i{ i w}_i{Z}^{i-1};\kern1em {\left[\frac{\partial W(Z)}{\partial Z}\right]}_{Z=1}\equiv W^{\prime }(1)={\sum}_i{ i w}_i={P}_{\mathrm{X}\mathrm{w}}\\ {}{W}_{\mathrm{M}}(Z)={\sum}_i{w}_i{Z}^{i M}= Z\frac{\partial {N}_{\mathrm{M}}(Z)}{\partial Z}/{\left[\frac{\partial {N}_{\mathrm{M}}(Z)}{\partial Z}\right]}_{Z=1}\\ {}\frac{\partial {W}_{\mathrm{M}}(Z)}{\partial Z}={\sum}_i{ i w}_i{M}_{\mathrm{X}}{Z}^{i M-1}\\ {}{\left[\frac{\partial {N}_{\mathrm{M}}(Z)}{\partial Z}\right]}_{Z=1}\equiv N{\prime}_{\mathrm{M}}(1)={\sum}_i{ i n}_i{M}_{\mathrm{x}}={M}_{\mathrm{X}}{P}_{\mathrm{X}\mathrm{n}}\end{array} \)

\( \begin{array}{l}{P}_{\mathrm{X}\mathrm{w}}={\sum}_i{i w}_i={\sum}_i{i}^2{n}_i/{\sum}_i{i n}_i\\ {}{M}_{\mathrm{X}\mathrm{w}}={\sum}_i{i w}_i{M}_{\mathrm{x}}={M}_{\mathrm{X}}{\sum}_i{i}^2{n}_i/{\sum}_i{i n}_i\end{array} \)

Number-average degree of polymerization P ABn and molecular weight M ABn of copolymer AB

\( \begin{array}{l} N\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)={\sum}_k{n}_k\sum_{i=0}^k{x}_{i, k- i}{Z}_{\mathrm{A}}^i{Z}_{\mathrm{B}}^{k- i}\overset{\mathrm{random}}{=}{\sum}_k{n}_k{\left({x}_{\mathrm{A}}{Z}_{\mathrm{A}}+\left(1-{x}_{\mathrm{A}}\right){Z}_{\mathrm{B}}\right)}^k\\ {}\mathrm{DP}:{Z}_{\mathrm{A}}={Z}_{\mathrm{B}}= Z,\kern1em {\left[\frac{\partial N(Z)}{\partial Z}\right]}_{Z=1}={\sum}_k{ k n}_k={P}_{\mathrm{A}\mathrm{Bn}}\\ {}{N}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)={\sum}_k{n}_k\sum_{i=0}^k{n}_{i, k- i}{Z}_{\mathrm{A}}^{{i M}_{\mathrm{A}}}{Z}_{\mathrm{B}}^{\left( k- i\right){M}_{\mathrm{B}}}\overset{\mathrm{random}}{=}\\ {}{\sum}_k{n}_k{\left({x}_{\mathrm{A}}{Z}_{\mathrm{A}}^{M_{\mathrm{A}}}+\left(1-{x}_{\mathrm{A}}\right){Z}_{\mathrm{B}}^{M_{\mathrm{B}}}\right)}^k\\ {}{\left[\frac{\partial {N}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)}{\partial {Z}_{\mathrm{A}}}\right]}_{Z_{\mathrm{A}}={Z}_{\mathrm{B}}=1}+{\left[\frac{\partial {N}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)}{\partial {Z}_{\mathrm{B}}}\right]}_{Z_{\mathrm{A}}={Z}_{\mathrm{B}}=1}=\\ {}{\sum}_k{n}_k\sum_{i=0}^k\left({ i n}_{i, k- i}{M}_{\mathrm{A}}+\left( k- i\right){n}_{i, k- i}{M}_{\mathrm{B}}\right)\overset{\mathrm{random}}{=}\\ {}{\sum}_k{ k n}_k\left({x}_{\mathrm{A}}{M}_{\mathrm{A}}+\left(1-{x}_{\mathrm{A}}\right){M}_{\mathrm{B}}\right)={M}_{\mathrm{A}\mathrm{Bn}}\end{array} \)

\( \begin{array}{l}{P}_{\mathrm{A}\mathrm{Bn}}={\sum}_i{ i n}_i={\sum}_i\sum_{j=0}^i\left({ j n}_{\mathrm{A} j}+\left( i- j\right){n}_{\mathrm{B}\left( i- j\right)}\right)\\ {}{M}_{\mathrm{A}\mathrm{Bn}}={\sum}_i\sum_{j=0}^i\left({ j n}_{\mathrm{A} j}{M}_{\mathrm{A}}+\left( i- j\right){n}_{\mathrm{B}\left( i- j\right)}{M}_{\mathrm{B}}\right)\end{array} \)

w-Average (weight-average) degree of polymerization P Xw and molecular weight M Xw of copolymer AB

\( \begin{array}{l} W\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)=\sum_k{w}_k\sum_{i=0}^k{x}_{i, k- i}{Z}_{\mathrm{A}}^i{Z}_{\mathrm{B}}^{k- i}\overset{\mathrm{random}}{=}\sum_k{w}_k\left({x}_{\mathrm{A}}{Z}_{\mathrm{A}}+\right(1-{x}_{\mathrm{A}}\left){Z}_{\mathrm{B}}\right){}^k\\ {}\mathrm{DP}:{Z}_{\mathrm{A}}={Z}_{\mathrm{B}}= Z\kern1em \mathsf{as}\kern0.5em \mathsf{homopolymer}\\ {}{\left[\frac{\partial W(Z)}{\partial Z}\right]}_{Z=1}=\sum_k{k w}_k={P}_{\mathrm{A}\mathrm{Bw}}\\ {}{W}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)=\sum_k{w}_k\sum_{i=0}^k{n}_{i, k- i}{Z}_{\mathrm{A}}^{i{M}_{\mathrm{A}}}{Z}_{\mathrm{B}}^{\left( k- i\right){M}_{\mathrm{B}}}\overset{\mathrm{random}}{=}\sum_k{w}_k\left({x}_{\mathrm{A}}{Z}_{\mathrm{A}}^{M_{\mathrm{A}}}+\right(1-{x}_{\mathrm{A}}\left){Z}_{\mathrm{B}}^{M_{\mathrm{B}}}\right){}^k\\ {}{W}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)=\sum_k{n}_k\sum_{i=0}^k{x}_{i, k- i}{Z}_{\mathrm{A}}^{i{M}_{\mathrm{A}}}{Z}_{\mathrm{B}}^{\left( k- i\right){M}_{\mathrm{B}}}\overset{\mathrm{random}}{=}\sum_k{n}_k\left({x}_{\mathrm{A}}{Z}_{\mathrm{A}}^{M_{\mathrm{A}}}+\right(1-{x}_{\mathrm{A}}\left){Z}_{\mathrm{B}}^{M_{\mathrm{B}}}\right){}^k\\ {}{W}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)=\Big(1/{M}_{\mathrm{A}\mathrm{Bn}}\Big)\left({Z}_{\mathrm{A}}\frac{\partial {N}_{\mathrm{M}}}{\partial {Z}_{\mathrm{A}}}+{Z}_{\mathrm{B}}\frac{\partial {N}_{\mathrm{M}}}{\partial {Z}_{\mathrm{B}}}\right)=\sum_k{n}_k\sum_{i=0}^k{x}_{i, k- i}{Z}_{\mathrm{A}}^{i{M}_{\mathrm{A}}}{Z}_{\mathrm{B}}^{\left( k- i\right){M}_{\mathrm{B}}}\\ {}\kern3pc =\left(1/{M}_{\mathrm{A}\mathrm{Bn}}\right)\sum_k{n}_k\sum_{i=0}^k\left({ i M}_{\mathrm{A}}+\right( k- i\left){M}_{\mathrm{B}}\right){x}_{i, k- i}{Z}_{\mathrm{A}}^{i{M}_{\mathrm{A}}}{Z}_{\mathrm{B}}^{\left( k- i\right){M}_{\mathrm{B}}}\\ {}{M}_{\mathrm{A}\mathrm{Bw}}={\left[\frac{\partial {W}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)}{\partial {Z}_{\mathrm{A}}}\right]}_{Z_{\mathrm{A}}={Z}_{\mathrm{B}}=1}+\left[\frac{\partial {W}_{\mathrm{M}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}}\right)}{\partial {Z}_{\mathrm{B}}}\right]{}_{Z_{\mathrm{A}}={Z}_{\mathrm{B}}=1}\\ {}\kern1.5pc =\left(1/{M}_{\mathrm{A}\mathrm{Bn}}\right)\sum_k{n}_k\sum_{i=0}^k\left({ i M}_{\mathrm{A}}+\right( k- i\left){M}_{\mathrm{B}}\right){}^2{x}_{i, k- i}\overset{\mathrm{random}}{=}\Big(1/{M}_{\mathrm{A}\mathrm{Bn}}\Big)\\ {}\sum_k{k}^2\left({x}_{\mathrm{A}}{M}_{\mathrm{A}}+\left(1-{x}_{\mathrm{A}}\right){M}_{\mathrm{B}}\right){}^2{n}_k=\left({x}_{\mathrm{A}}{M}_{\mathrm{A}}+\right(1-{x}_{\mathrm{A}}\left){M}_{\mathrm{B}}\right){P}_{\mathrm{A}\mathrm{Bw}}\end{array} \)

\( \begin{array}{l}{P}_{\mathrm{A}\mathrm{B}\mathrm{w}}\equiv {P}_{\mathrm{A}\mathrm{B}2}=\sum_i\sum_i{i}^2{n}_i/\sum_i{i n}_i\\ {}{M}_{\mathrm{A}\mathrm{B}\mathrm{w}}=\sum_i\sum_{j=0}^i\left({ j w}_{\mathrm{A}\mathrm{j}}{M}_{\mathrm{A}}+\left( i- j\right){w}_{\mathrm{B}\left( i- j\right)}{M}_{\mathrm{B}}\right)\\ {}{w}_{\mathrm{A}\mathrm{j}}=\frac{{ j n}_{\mathrm{A}\mathrm{j}}{M}_{\mathrm{A}}}{\sum_{j=0}^i\left({ j n}_{\mathrm{A}\mathrm{j}}{M}_{\mathrm{A}}+\left( i- j\right){n}_{\mathrm{B}\left( i- j\right)}{M}_{\mathrm{B}}\right)}\end{array} \)

Functionality Distributions

Definition

Probability generating function formulation

Number-average and w-average (second moment) functionality average—single functional group

\( \begin{array}{l}{F}_{\mathrm{f}\mathrm{n}}\left({Z}_{\mathrm{f}}\right)=\sum_f{n}_f{Z}_{\mathrm{f}}^f\\ {}{f}_{\mathrm{n}}={\left[\frac{\partial {F}_{\mathrm{f}\mathrm{n}}\left({Z}_{\mathrm{f}}\right)}{\partial {Z}_{\mathrm{f}}}\right]}_{Z_{\mathrm{f}}=1}\equiv F{\prime}_{\mathrm{f}\mathrm{n}}(1)\\ {}{F}_{\mathrm{f}2}\left({Z}_{\mathrm{f}}\right)=\sum_f{f n}_f{Z}_{\mathrm{f}}^f/{f}_{\mathrm{n}}={Z}_{\mathrm{f}}\frac{\partial {F}_{\mathrm{f}\mathrm{n}}\left({Z}_{\mathrm{f}}\right)}{\partial {Z}_{\mathrm{f}}}/{f}_{\mathrm{n}}\\ {}{f}_{\mathrm{w}}\equiv {f}_2={\left[\frac{\partial {F}_{\mathrm{f}2}\left({Z}_{\mathrm{f}}\right)}{\partial {Z}_{\mathrm{f}}}\right]}_{Z_{\mathrm{f}}=1}\end{array} \)

\( \begin{array}{l}{f}_{\mathrm{n}}=\sum_f{f n}_f\\ {}{f}_{\mathrm{w}}\equiv {f}_2=\frac{\sum_f{f}^2{n}_f}{\sum_f{f n}_f}\end{array} \)

Number-average and w-average (second moment) functionality average—two types of functional groups (R, S)

\( \begin{array}{l}{F}_{\mathrm{fn}}({Z}_{\mathrm{A}\mathrm{f}},{Z}_{\mathrm{Bf}})=\sum_{i,j}{n}_{ij}{Z}_{\mathrm{A}\mathrm{f}}^i{Z}_{\mathrm{Bf}}^j\\ {}{f}_{\mathrm{A}\mathrm{n}}={[\frac{\mathrm{\partial}{F}_{\mathrm{fn}}({Z}_{\mathrm{A}\mathrm{f}},{Z}_{\mathrm{Bf}})}{\mathrm{\partial}{Z}_{\mathrm{A}\mathrm{f}}}]}_{Z_{\mathrm{A}\mathrm{f}}={Z}_{\mathrm{Bf}}=1}\\ {}{F}_{\mathrm{A}\mathrm{f}2}({Z}_{\mathrm{A}\mathrm{f}},{Z}_{\mathrm{Bf}})=\sum_i{in}_{ij}{Z}_{\mathrm{A}\mathrm{f}}^i{Z}_{\mathrm{Bf}}^j/{f}_{\mathrm{A}\mathrm{n}}=\\ {}{Z}_{\mathrm{A}\mathrm{f}}\frac{\mathrm{\partial}{F}_{\mathrm{fn}}({Z}_{\mathrm{A}\mathrm{f}},{Z}_{\mathrm{Bf}})}{\mathrm{\partial}{Z}_{\mathrm{A}\mathrm{f}}}/{f}_{\mathrm{A}\mathrm{n}}\\ {}{f}_{\mathrm{A}\mathrm{w}}\equiv {f}_{\mathrm{A}2}={[\frac{\mathrm{\partial}{F}_{\mathrm{A}\mathrm{f}2}({Z}_{\mathrm{A}\mathrm{f}},{Z}_{\mathrm{Bf}})}{\mathrm{\partial}{Z}_{\mathrm{A}\mathrm{f}}}]}_{Z_{\mathrm{A}\mathrm{f}}={Z}_{\mathrm{Bf}}=1}=\sum_{i,j}{i}^2{n}_{ij}/{f}_{\mathrm{A}\mathrm{n}}\end{array} \)

\( \begin{array}{l}{f}_{\mathrm{A}\mathrm{n}}=\sum_f{f}_{\mathrm{A}}{n}_{f\mathrm{A}};\kern1em {f}_{\mathrm{B}\mathrm{n}}=\sum_f{f}_{\mathrm{B}}{n}_{f\mathrm{B}}\\ {}{f}_{\mathrm{A}\mathrm{w}}\equiv {f}_{\mathrm{A}2}=\frac{\sum_f{f}_{\mathrm{A}}^2{n}_{f\mathrm{A}}}{\sum_f{f}_{\mathrm{A}}{n}_{f\mathrm{A}}}\end{array} \)Other second-moment averages possible (depends on reaction paths)

Distribution of Reaction States of Building Units in the Branching Process

Cross-linking of f A-functional precursor with f B-functional cross-linker; groups of equal and independent reactivity

States in the form of a pgf: units, unreacted groups Af and Bf, and groups A reacted with B groups and B groups reacted with C groups of cross-linker marked; type of bond (A → B) indicated

\( \begin{array}{l}{\left(1-{\alpha}_{\mathrm{A}}+{\alpha}_{\mathrm{A}}\right)}^{f_{\mathrm{A}}}=\\ {}\sum_{i=0}^f\frac{f_{\mathrm{A}}!}{i!\left({f}_{\mathrm{A}}- i\right)!}{\alpha}_{\mathrm{A}}^i{\left(1-{\alpha}_{\mathrm{A}}\right)}^{f_{\mathrm{A}}- i}=\\ {}{\left(1-{\alpha}_{\mathrm{A}}\right)}^{f_{\mathrm{A}}}+ f\left(1-{\alpha}_{\mathrm{A}}\right){}^{f_{\mathrm{A}}-1}{\alpha}_{\mathrm{A}}+\dots \\ {}+{f}_{\mathrm{A}}\left(1-{\alpha}_{\mathrm{A}}\right){\alpha}_{\mathrm{A}}^{f_{\mathrm{A}}-1}+{\alpha}_{\mathrm{A}}^{f_{\mathrm{A}}}\end{array} \)

n A, n B mole fractions of precursors A and B, respectively

\( \begin{array}{l}{F}_0\left({Z}_{\mathrm{A}},{Z}_{\mathrm{A}\mathrm{f}},{Z}_{\mathrm{B}},{Z}_{\mathrm{B}\mathrm{f}},{z}_{\mathrm{A}\mathrm{B}},{z}_{\mathrm{B}\mathrm{A}}\right)\equiv {F}_0\left(\mathbf{Z},\mathbf{z}\right)=\\ {}{n}_{\mathrm{A}}{F}_{0\mathrm{A}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{A}\mathrm{f}},{z}_{\mathrm{A}\mathrm{B}}\right)+{n}_{\mathrm{A}}{F}_{0\mathrm{B}}\left({Z}_{\mathrm{B}},{Z}_{\mathrm{B}\mathrm{f}},{z}_{\mathrm{B}\mathrm{A}}\right);\\ {}{F}_{0\mathrm{A}}\left({Z}_{\mathrm{A}},{Z}_{\mathrm{A}\mathrm{f}},{z}_{\mathrm{A}\mathrm{B}}\right)={Z}_{\mathrm{A}}{\left(\left(1-{\alpha}_{\mathrm{A}}\right){Z}_{\mathrm{A}\mathrm{f}}+{\alpha}_{\mathrm{A}}{z}_{\mathrm{A}\mathrm{B}}\right)}^{f_{\mathrm{A}}}=\\ {}{Z}_{\mathrm{A}}{\left(1-{\alpha}_{\mathrm{A}}\right)}^{f_{\mathrm{A}}}{Z}_{\mathrm{A}\mathrm{f}}^{f_{\mathrm{A}}}+{Z}_{\mathrm{A}}{\left(1-{\alpha}_{\mathrm{A}}\right)}^{f_{\mathrm{A}}-1}{Z}_{\mathrm{A}\mathrm{f}}^{f_{\mathrm{A}}-1}{\alpha}_{\mathrm{A}}{z}_{\mathrm{A}\mathrm{B}}+\dots +\\ {}{Z}_{\mathrm{A}}{f}_{\mathrm{A}}\left(1-\alpha \right){Z}_{\mathrm{A}\mathrm{f}}{\alpha}_{\mathrm{A}}^{f_{\mathrm{A}}-1}+{Z}_{\mathrm{A}}{\alpha}_{\mathrm{A}}^{f_{\mathrm{A}}}{z}_{\mathrm{A}\mathrm{B}}^{f_{\mathrm{A}}}\end{array} \)

Cross-linking of functional copolymer with cross-linker C:

\( \begin{array}{l}{F}_0\left(\mathbf{Z},\mathbf{z}\right)={n}_{\mathrm{A}\mathrm{B}}{F}_{0\mathrm{AB}}+{n}_{\mathrm{C}}{F}_{0\mathrm{C}}\\ {}{F}_{0\mathrm{AB}}\left(\mathbf{Z},\mathbf{z}\right)={N}_{\mathrm{A}\mathrm{B}}\left({Z}_{\mathrm{A}},{F}_{0\mathrm{B}}\left({Z}_{\mathrm{B}},{z}_{\mathrm{B}\mathrm{C}}\right)\right)=\\ {}\sum_k{n}_k{\left({x}_{\mathrm{A}}{Z}_{\mathrm{A}}+\left(1-{x}_{\mathrm{A}}\right){Z}_{\mathrm{B}}\left(1-{\alpha}_{\mathrm{B}}+{\alpha}_{\mathrm{B}}{z}_{\mathrm{B}\mathrm{C}}\right)\right)}^k\end{array} \)

Distribution of states of AB copolymer;

B-unit carries a reactive group which reacts with C-group of C-cross-linker

\( \begin{array}{l}{F}_{0\mathrm{AB}}\left(\mathbf{Z},\mathbf{z}\right)={N}_{\mathrm{A}\mathrm{B}}\left(\xi \right)=\sum_k{n}_k{\xi}^k\\ {}\xi \left({Z}_{\mathrm{A}},{Z}_{\mathrm{B}},{z}_{\mathrm{B}\mathrm{C}}\right)={x}_{\mathrm{A}}{Z}_{\mathrm{A}}+\left(1-{x}_{\mathrm{A}}\right){Z}_{\mathrm{B}}\left(1-{\alpha}_{\mathrm{B}}+{\alpha}_{\mathrm{B}}{z}_{\mathrm{B}\mathrm{C}}\right)\end{array} \)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dušek, K., Huybrechts, J., Dušková-Smrčková, M. (2017). Role of Distributions in Binders and Curatives and Their Effect on Network Evolution and Structure. In: Wen, M., Dušek, K. (eds) Protective Coatings. Springer, Cham. https://doi.org/10.1007/978-3-319-51627-1_1

Download citation

Publish with us

Policies and ethics