Skip to main content

Abstract

Let M and M S respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on \(\mathbb{R}^{n}\), and let w be a nonnegative locally integrable function on \(\mathbb{R}^{n}\). We define the associated Tauberian functions C HL, w (α) and C S, w (α) on (0, 1) by

$$\displaystyle{\mathsf{C}_{\mathsf{HL},w}(\alpha )\,:=\,\sup _{\begin{array}{c}E\subset \mathbb{R}^{n} \\ 0<w(E)<\infty \end{array}} \frac{1} {w(E)}w(\{x \in \mathbb{R}^{n}: \mathsf{M}\chi _{ E}(x)>\alpha \})}$$

and

$$\displaystyle{\mathsf{C}_{\mathsf{S},w}(\alpha )\,:=\,\sup _{\begin{array}{c}E\subset \mathbb{R}^{n} \\ 0<w(E)<\infty \end{array}} \frac{1} {w(E)}w(\{x \in \mathbb{R}^{n}: \mathsf{M}_{\mathsf{ S}}\chi _{E}(x)>\alpha \}).}$$

Utilizing weighted Solyanik estimates for M and M S , we show that the function C HL, w lies in the local Hölder class \(C^{(c_{n}[w]_{A_{\infty }})^{-1} }(0,1)\) and C S, w lies in the local Hölder class \(C^{(c_{n}[w]_{A_{\infty }^{{\ast}}})^{-1} }(0,1)\), where the constant c n > 1 depends only on the dimension n.

P. H. is partially supported by a grant from the Simons Foundation (#208831 to Paul Hagelstein).

I. P. is supported by IKERBASQUE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Fujii, Weighted bounded mean oscillation and singular integrals. Math. Japon. 22 (5), 529–534 (1977/1978). MR0481968 (58 #2058)

    Google Scholar 

  2. J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116 (North-Holland Publishing Co., Amsterdam, 1985). Notas de Matemática [Mathematical Notes], 104. MR807149 (87d:42023)

    Google Scholar 

  3. P. Hagelstein, I. Parissis, Solyanik estimates in harmonic analysis, in Special Functions, Partial Differential Equations, and Harmonic Analysis. Springer Proceedings in Mathematics and Statistics, vol. 108 (Springer, Heidelberg, 2014), pp. 87–103

    Google Scholar 

  4. P.A. Hagelstein, I. Parissis, Solyanik estimates and local Hölder continuity of halo functions of geometric maximal operators. Adv. Math. 285, 434–453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. P.A. Hagelstein, I. Parissis, Weighted Solyanik estimates for the Hardy-Littlewood maximal operator and embedding of A into A p . J. Geom. Anal. 26, 924–946 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. P.A. Hagelstein, I. Parissis, Weighted Solyanik estimates for the strong maximal function Publ. Mat. (2014). (to appear). Available at 1410.3402

    Google Scholar 

  7. P.A. Hagelstein, T. Luque, I. Parissis, Tauberian conditions, Muckenhoupt weights, and differentiation properties of weighted bases. Trans. Am. Math. Soc. 367, 7999–8032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Hytönen, C. Pérez, Sharp weighted bounds involving A . Anal. PDE 6 (4), 777–818 (2013). MR3092729

    Google Scholar 

  9. A.A. Solyanik, On halo functions for differentiation bases. Mat. Zametki 54 (6), 82–89, 160 (1993) (Russian, with Russian summary); English trans., Math. Notes 54 (1993), no. 5–6, 1241–1245 (1994). MR1268374 (95g:42033)

    Google Scholar 

  10. J.M. Wilson, Weighted inequalities for the dyadic square function without dyadic A . Duke Math. J. 55 (1), 19–50 (1987). MR883661 (88d:42034)

    Google Scholar 

  11. M. Wilson, Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Lecture Notes in Mathematics, vol. 1924 (Springer, Berlin, 2008). MR2359017 (2008m:42034)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Hagelstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s) and the Association for Women in Mathematics

About this paper

Cite this paper

Hagelstein, P., Parissis, I. (2017). A Note on Local Hölder Continuity of Weighted Tauberian Functions. In: Pereyra, M., Marcantognini, S., Stokolos, A., Urbina, W. (eds) Harmonic Analysis, Partial Differential Equations, Banach Spaces, and Operator Theory (Volume 2). Association for Women in Mathematics Series, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-51593-9_11

Download citation

Publish with us

Policies and ethics