Skip to main content

Deformation and Strengthening Mechanisms in AISI 321 Austenitic Stainless Steel Under Both Dynamic and Quasi-Static Loading Conditions

  • Conference paper
  • First Online:
TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 4483 Accesses

Abstract

The mechanical response of AISI 321 austenitic stainless steel under compressive loads at strain rates of 6600 s−1 and 4.2 × 10−3 s−1 were studied using the split Hopkinson pressure bar and Instron R5500 mechanical testing system respectively. Specimens subjected to quasi-static compression showed lower yield strength and higher strain hardening capacity than the dynamically impacted specimen. High-resolution electron backscattered diffraction (HR-EBSD) study revealed that precipitation of nano-sized carbide and evolution of strain-induced martensite contributed to strengthening while plastic deformation mechanisms occurred in the specimens by slip and mechanical twinning during deformation under both quasi-static and dynamic loading conditions. The strain-induced phase transformation follows the FCC ɣ-austenite → BCC ά-martensite kinetic path with both phases maintaining the Kurdjumov-Sachs’ {(111)ɣ||(110)ά and <−101> ɣ|| <1−11> ά} orientation relationship. A transformed shear band consisting of nano-grains with an average size of 0.28 µm was one of the microstructural features of the dynamically impacted specimen. HR-EBSD analysis revealed that the equiaxed ultra-fine grain structure in the TSB developed by rotational dynamic recrystallization mechanism while dynamic recovery occurred at the interface between the inside and outside of the band. During the deformation under both loading conditions, volume fraction of compression direction (CD)//{110} and CD//{111} increases substantially and slightly, respectively at the expense of CD//{100} fibre texture for the austenitic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. M. Eskandari, A. Kermanpur, A. Najafizadeh, Formation of nanocrystalline structure in 301 stainless steel produced by martensite treatment. Metall. Mater. Trans. A 40, 2241–2249 (2009)

    Article  Google Scholar 

  2. K. Guan, X. Xu, H. Xu, Z. Wang, Effect of aging at 700°C on precipitation and toughness of AISI 321 and AISI 347 austenitic stainless steel welds. Nucl. Eng. Des. 235, 2485–2494 (2005)

    Article  Google Scholar 

  3. R.K.C. Nkhoma, C.W. Siyasiya, W.E. Stumpf, Hot workability of AISI 321 and AISI 304 austenitic stainless steels. J. Alloys Compd. 595, 103–112 (2014)

    Article  Google Scholar 

  4. J. Talonen, H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 55, 6108–6118 (2007)

    Article  Google Scholar 

  5. W. Zhang, J. Wu, Y. Wen, J. Ye, N. Li, Characterization of different work hardening behavior in AISI 321 stainless steel and hadfield steel. J. Mater. Sci. 45, 3433–3437 (2010)

    Article  Google Scholar 

  6. P. Hedström, Deformation induced martensitic transformation of metastable stainless steel AISI 301 (2005)

    Google Scholar 

  7. A.A. Tiamiyu, A.Y. Badmos, A.G. Odeshi, Effects of temper condition on high strain-rate deformation of AA 2017 aluminum alloy in compression. Mater. Des. 89, 872–883 (2016)

    Article  Google Scholar 

  8. D. Yang, Y. An, P. Cizek, P. Hodgson, Development of adiabatic shear band in cold-rolled titanium. Mater. Sci. Eng. A 528(12), 3990–3997 (2011)

    Article  Google Scholar 

  9. S. Nemat-Naser, Introduction to high strain-rate testing, high strain rate tension and compression tests. in ASM Handbook, vol. 8 (2000), pp. 942–955

    Google Scholar 

  10. W.Q. Song, S. Sun, S. Zhu, G. Wang, J. Wang, M.S. Dargusch, Compressive deformation behavior of a near-beta titanium alloy. Mater. Des. 34, 739–745 (2012)

    Article  Google Scholar 

  11. B.F. Wang, Z.L. Liu, X.Y. Wang, Z.Z. Li, An EBSD investigation on deformation-induced shear bands in a low nickel austenitic stainless steel under controlled shock-loading conditions. Mater. Sci. Eng. A 610, 301–308 (2014)

    Article  Google Scholar 

  12. Y. Yang, F. Jiang, B.M. Zhou, X.M. Li, H.G. Zheng, Q.M. Zhang, Microstructural characterization and evolution mechanism of adiabatic shear band in a near beta-Ti alloy. Mater. Sci. Eng. A 528(6), 2787–2794 (2011)

    Article  Google Scholar 

  13. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, T.R. McNelley, Microstructural evolution in adiabatic shear localization in stainless steel. Acta Mater. 51(5), 1307–1325 (2003)

    Article  Google Scholar 

  14. H. Hu, Texture of metals. Texture 1(4), 233–258 (1974)

    Article  Google Scholar 

  15. C. Herrera, D. Ponge, D. Raabe, Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 59(11), 4653–4664 (2011)

    Article  Google Scholar 

  16. H. Wang, Y. Jeong, B. Clausen, Y. Liu, R.J. Mccabe, F. Barlat, C.N. Tomé, Effect of martensitic phase transformation on the behavior of 304 austenitic stainless steel under tension. Mater. Sci. Eng. A 649, 174–183 (2015)

    Article  Google Scholar 

  17. M. Zhang, L. Li, R.Y. Fu, D. Krizan, B.C. De Cooman, Continuous cooling transformation diagrams and properties of micro-alloyed TRIP steels. Mater. Sci. Eng. A. 438440, 296–299 (2006)

    Google Scholar 

  18. D. Mohr, J. Jacquemin, Large deformation of anisotropic austenitic stainless steel sheets at room temperature: multi-axial experiments and phenomenological modeling. J. Mech. Phys. Solids 56(10), 2935–2956 (2008)

    Article  Google Scholar 

  19. B.R. Kumar, A.K. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, D.K. Bhattacharya, Deformation-induced transformation textures in metastable austenitic stainless steel. Mater. Sci. Eng. A 429, 205–211 (2006)

    Article  Google Scholar 

  20. H.F.G. De Abreu, S.S. De Carvalho, P. De Lima Neto, R.P. Dos Santos, V.N. Freire, P.M.D.O. Silva, S.S.M. Tavares, Deformation induced martensite in an AISI 301LN stainless steel: characterization and influence on pitting corrosion resistance. Mater. Res. 10(4), 359–366 (2007)

    Article  Google Scholar 

  21. M.T. Pérez-Prado, J.A. Hines, K.S. Vecchio, Microstructural evolution in adiabatic shear bands in Ta and Ta-W alloys. Acta Mater. 49, 2905–2917 (2001)

    Article  Google Scholar 

  22. M. Chabaud-Reytier, L. Allais, C. Caes, P. Dubuisson, A. Pineau, Mechanisms of stress relief cracking in titanium stabilised austenitic stainless steel. J. Nucl. Mater. 323(1), 123–137 (2003)

    Article  Google Scholar 

  23. J.F.C. Lins, H.R.Z. Sandim, H.-J. Kestenbach, D. Raabe, K.S. Vecchio, A microstructural investigation of adiabatic shear bands in an interstitial free steel. Mater. Sci. Eng. A 457(1–2), 205–218 (2007)

    Article  Google Scholar 

  24. V.F. Nesterenko, M.A. Meyers, J.C. LaSalvia, M.P. Bondar, Y.J. Chen, Y.L. Lukyanov, Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum. Mater. Sci. Eng. A 229(1–2), 23–41 (1997)

    Article  Google Scholar 

  25. J. Hines, K. Vecchio, S. Ahzi, A model for microstructure evolution in adiabatic shear bands. Metall. Mater. Trans. A 29, 1998 (1998)

    Article  Google Scholar 

  26. B. Derby, The dependence of grain size on stress during dynamic recrystallisation. Acta Metall. Mater. 39(5), 955–962 (1991)

    Article  Google Scholar 

  27. Y. Xu, J. Zhang, Y. Bai, M.A. Meyers, Shear localization in dynamic deformation: microstructural evolution. Metall. Mater. Trans. A 39(4), 811–843 (2008)

    Article  Google Scholar 

  28. Z.P. Wan, Y.E. Zhu, H.W. Liu, Y. Tang, Microstructure evolution of adiabatic shear bands and mechanisms of saw-tooth chip formation in machining Ti6Al4V. Mater. Sci. Eng. A 531, 155–163 (2012)

    Article  Google Scholar 

  29. A.A. Tiamiyu, R. Basu, A.G. Odeshi, J.A. Szpunar, Plastic deformation in relation to microstructure and texture evolution in AA 2017-T451 and AA 2624-T351 aluminum alloys under dynamic impact loading. Mater. Sci. Eng.A 636, 379–388 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of Natural Sciences and Engineering Research Council of Canada (NSERC) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tiamiyu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Tiamiyu, A.A., Odeshi, A.G., Szpunar, J.A. (2017). Deformation and Strengthening Mechanisms in AISI 321 Austenitic Stainless Steel Under Both Dynamic and Quasi-Static Loading Conditions. In: TMS, T. (eds) TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51493-2_19

Download citation

Publish with us

Policies and ethics