Skip to main content

Zebrafish Pronephros Development

  • Chapter
  • First Online:
Kidney Development and Disease

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 60))

Abstract

The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water—processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alarcon P, Rodriguez-Seguel E, Fernandez-Gonzalez A, Rubio R, Gomez-Skarmeta JL (2008) A dual requirement for Iroquois genes during Xenopus kidney development. Development 135:3197–3207

    Article  CAS  PubMed  Google Scholar 

  • Bassiouny HS, Song RH, Hong XF, Singh A, Kocharyan H, Glagov S (1998) Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation 98:157–163

    Article  CAS  PubMed  Google Scholar 

  • Bedell VM, Person AD, Larson JD, McLoon A, Balciunas D, Clark KJ, Neff KI, Nelson KE, Bill BR, Schimmenti LA (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139:793–804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533

    Article  PubMed  Google Scholar 

  • Bollig F, Mehringer R, Perner B, Hartung C, Schafer M, Schartl M, Volff JN, Winkler C, Englert C (2006) Identification and comparative expression analysis of a second wt1 gene in zebrafish. Dev Dyn 235:554–561

    Article  CAS  PubMed  Google Scholar 

  • Bollig F, Perner B, Besenbeck B, Kothe S, Ebert C, Taudien S, Englert C (2009) A highly conserved retinoic acid responsive element controls wt1a expression in the zebrafish pronephros. Development 136:2883–2892

    Article  CAS  PubMed  Google Scholar 

  • Bouchard M, Pfeffer P, Busslinger M (2000) Functional equivalence of the transcription factors Pax2 and Pax5 in mouse development. Development 127:3703–3713

    Article  CAS  PubMed  Google Scholar 

  • Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks ER, Wallingford JB (2014) Multiciliated cells. Curr Biol 24:R973–R982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burckle C, Gaude HM, Vesque C, Silbermann F, Salomon R, Jeanpierre C, Antignac C, Saunier S, Schneider-Maunoury S (2011) Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 20:2611–2627

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A (1996) Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  • Carroll TJ, Vize PD (1999) Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214:46–59

    Article  CAS  PubMed  Google Scholar 

  • Chen YH, Chang CF, Lai YY, Sun CY, Ding YJ, Tsai JN (2015) von Hippel-Lindau gene plays a role during zebrafish pronephros development. In vitro cellular and developmental biology. Animal 51:1023–1032

    CAS  Google Scholar 

  • Cheng CN, Wingert RA (2015) Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Dev Biol 399:100–116

    Article  CAS  PubMed  Google Scholar 

  • Dash SN, Lehtonen E, Wasik AA, Schepis A, Paavola J, Panula P, Nelson WJ, Lehtonen S (2014) Sept7b is essential for pronephric function and development of left-right asymmetry in zebrafish embryogenesis. J Cell Sci 127:1476–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson AJ, Zon LI (2004) The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 23:7233–7246

    Article  CAS  PubMed  Google Scholar 

  • de Jong JL, Davidson AJ, Wang Y, Palis J, Opara P, Pugach E, Daley GQ, Zon LI (2010) Interaction of retinoic acid and scl controls primitive blood development. Blood 116:201–209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Robertis EM (2009) Spemann’s organizer and the self-regulation of embryonic fields. Mech Dev 126:925–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diep CQ, Peng Z, Ukah TK, Kelly PM, Daigle RV, Davidson AJ (2015) Development of the zebrafish mesonephros. Genesis 53:257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS (2003) The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 130:1837–1851

    Article  CAS  PubMed  Google Scholar 

  • Doyonnas R, Kershaw DB, Duhme C, Merkens H, Chelliah S, Graf T, McNagny KM (2001) Anuria, omphalocele, and perinatal lethality in mice lacking the CD34-related protein podocalyxin. J Exp Med 194:13–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304

    Article  CAS  PubMed  Google Scholar 

  • Drummond IA, Davidson AJ (2010) Zebrafish kidney development. Methods Cell Biol 100:233–260

    Article  CAS  PubMed  Google Scholar 

  • Drummond IA, Majumdar A, Hentschel H, Elger M, Solnica-Krezel L, Schier AF, Neuhauss SC, Stemple DL, Zwartkruis F, Rangini Z, Driever W, Fishman MC (1998) Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. Development 125:4655–4667

    Article  CAS  PubMed  Google Scholar 

  • Elinson RP, Rowning B (1988) A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev Biol 128:185–197

    Article  CAS  PubMed  Google Scholar 

  • Fauny JD, Thisse B, Thisse C (2009) The entire zebrafish blastula-gastrula margin acts as an organizer dependent on the ratio of Nodal to BMP activity. Development 136:3811–3819

    Article  CAS  PubMed  Google Scholar 

  • Gao B (2012) Wnt regulation of planar cell polarity (PCP). Curr Top Dev Biol 101:263–295

    Article  CAS  PubMed  Google Scholar 

  • Gerlach GF, Wingert RA (2014) Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev Biol 396:183–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandel H, Lun K, Rauch GJ, Rhinn M, Piotrowski T, Houart C, Sordino P, Kuchler AM, Schulte-Merker S, Geisler R, Holder N, Wilson SW, Brand M (2002) Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development 129:2851–2865

    Article  CAS  PubMed  Google Scholar 

  • Gu W, Monteiro R, Zuo J, Simoes FC, Martella A, Andrieu-Soler C, Grosveld F, Sauka-Spengler T, Patient R (2015) A novel TGFbeta modulator that uncouples R-Smad/I-Smad-mediated negative feedback from R-Smad/ligand-driven positive feedback. PLoS Biol 13:e1002051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13:654–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haase VH (2006) The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int 69:1302–1307

    Article  CAS  PubMed  Google Scholar 

  • Harvey SA, Smith JC (2009) Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biol 7:e1000101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He L, Xu W, Jing Y, Wu M, Song S, Cao Y, Mei C (2015) Yes-associated protein (Yap) is necessary for ciliogenesis and morphogenesis during pronephros development in zebrafish (Danio Rerio). Int J Biol Sci 11:935–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heliot C, Desgrange A, Buisson I, Prunskaite-Hyyrylainen R, Shan J, Vainio S, Umbhauer M, Cereghini S (2013) HNF1B controls proximal-intermediate nephron segment identity in vertebrates by regulating Notch signalling components and Irx1/2. Development 140:873–885

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt F, Benzing T, Katsanis N (2011) Ciliopathies. N Engl J Med 364:1533–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, Qi Z, Ponniah S, Hong W, Hunziker W (2007) Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci USA 104:1631–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu N, Yost HJ, Clark EB (2001) Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec 264:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hyvärinen J, Parikka M, Sormunen R, Rämet M, Tryggvason K, Kivirikko KI, Myllyharju J, Koivunen P (2010) Deficiency of a transmembrane prolyl 4-hydroxylase in the zebrafish leads to basement membrane defects and compromised kidney function. J Biol Chem 285:42023–42032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichimura K, Bubenshchikova E, Powell R, Fukuyo Y, Nakamura T, Tran U, Oda S, Tanaka M, Wessely O, Kurihara H (2012) A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS One 7(9):e45286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichimura K, Powell R, Nakamura T, Kurihara H, Sakai T, Obara T (2013) Podocalyxin regulates pronephric glomerular development in zebrafish. Phys Rep 1

    Google Scholar 

  • Ikenaga T, Urban JM, Gebhart N, Hatta K, Kawakami K, Ono F (2011) Formation of the spinal network in zebrafish determined by domain-specific pax genes. J Comp Neurol 519:1562–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa H, Marshall WF (2011) Ciliogenesis: building the cell’s antenna. Nat Rev Mol Cell Biol 12:222–234

    Article  CAS  PubMed  Google Scholar 

  • James RG, Schultheiss TM (2003) Patterning of the avian intermediate mesoderm by lateral plate and axial tissues. Dev Biol 253:109–124

    Article  CAS  PubMed  Google Scholar 

  • James RG, Schultheiss TM (2005) Bmp signaling promotes intermediate mesoderm gene expression in a dose-dependent, cell-autonomous and translation-dependent manner. Dev Biol 288:113–125

    Article  CAS  PubMed  Google Scholar 

  • James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM (2006) Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development 133:2995–3004

    Article  CAS  PubMed  Google Scholar 

  • Jesuthasan S, Stahle U (1997) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr Biol 7:31–42

    Article  CAS  PubMed  Google Scholar 

  • Kim SK, Shindo A, Park TJ, Oh EC, Ghosh S, Gray RS, Lewis RA, Johnson CA, Attie-Bittach T, Katsanis N, Wallingford JB (2010) Planar cell polarity acts through septins to control collective cell movement and ciliogenesis. Science (New York, NY) 329:1337–1340

    Article  CAS  Google Scholar 

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski DJ, Murakami T, Ho RK, Weinberg ES (1997) Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem Cell Biol 75:551–562

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005a) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921

    Article  CAS  PubMed  Google Scholar 

  • Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA (2005b) Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. Dev Biol 285:316–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudoh T, Tsang M, Hukriede NA, Chen X, Dedekian M, Clarke CJ, Kiang A, Schultz S, Epstein JA, Toyama R, Dawid IB (2001) A gene expression screen in zebrafish embryogenesis. zfin.org

    Article  CAS  PubMed  Google Scholar 

  • Kumano G, Smith WC (2002) Revisions to the Xenopus gastrula fate map: implications for mesoderm induction and patterning. Dev Dyn 225:409–421

    Article  PubMed  Google Scholar 

  • Kyuno J, Masse K, Jones EA (2008) A functional screen for genes involved in Xenopus pronephros development. Mech Dev 125:571–586

    Article  CAS  PubMed  Google Scholar 

  • Lane MC, Sheets MD (2002a) Primitive and definitive blood share a common origin in Xenopus: a comparison of lineage techniques used to construct fate maps. Dev Biol 248:52–67

    Article  CAS  PubMed  Google Scholar 

  • Lane MC, Sheets MD (2002b) Rethinking axial patterning in amphibians. Dev Dyn 225:434–447

    Article  PubMed  Google Scholar 

  • Lane MC, Sheets MD (2006) Heading in a new direction: implications of the revised fate map for understanding Xenopus laevis development. Dev Biol 296:12–28

    Article  CAS  PubMed  Google Scholar 

  • Langdon YG, Mullins MC (2011) Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev Genet 45:357–377

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Cheng CN, Verdun VA, Wingert RA (2014) Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Dev Biol 386:111–122

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Pathak N, Kramer-Zucker A, Drummond IA (2007) Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros. Development 134:1111–1122

    Article  CAS  PubMed  Google Scholar 

  • Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 12:363–372

    Article  CAS  PubMed  Google Scholar 

  • Ma M, Jiang YJ (2007) Jagged2a-notch signaling mediates cell fate choice in the zebrafish pronephric duct. PLoS Genet 3:e18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majumdar A, Drummond IA (1999) Podocyte differentiation in the absence of endothelial cells as revealed in the zebrafish avascular mutant, cloche. Dev Genet 24:220–229

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Drummond IA (2000) The zebrafish floating head mutant demonstrates podocytes play an important role in directing glomerular differentiation. Dev Biol 222:147–157

    Article  CAS  PubMed  Google Scholar 

  • Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098

    Article  CAS  PubMed  Google Scholar 

  • Makita R, Uchijima Y, Nishiyama K, Amano T, Chen Q, Takeuchi T, Mitani A, Nagase T, Yatomi Y, Aburatani H, Nakagawa O, Small EV, Cobo-Stark P, Igarashi P, Murakami M, Tominaga J, Sato T, Asano T, Kurihara Y, Kurihara H (2008) Multiple renal cysts, urinary concentration defects, and pulmonary emphysematous changes in mice lacking TAZ. Am J Physiol Ren Physiol 294:F542–F553

    Article  CAS  Google Scholar 

  • Marra AN, Wingert RA (2016) Epithelial cell fate in the nephron tubule is mediated by the ETS transcription factors etv5a and etv4 during zebrafish kidney development. Dev Biol 411:231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massa F, Garbay S, Bouvier R, Sugitani Y, Noda T, Gubler MC, Heidet L, Pontoglio M, Fischer E (2013) Hepatocyte nuclear factor 1beta controls nephron tubular development. Development 140:886–896

    Article  CAS  PubMed  Google Scholar 

  • Mayor R, Etienne-Manneville S (2016) The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17:97–109

    Article  CAS  PubMed  Google Scholar 

  • Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA (2008) odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 135:3355–3367

    Article  CAS  PubMed  Google Scholar 

  • Naylor RW, Przepiorski A, Ren Q, Yu J, Davidson AJ (2013) HNF1beta is essential for nephron segmentation during nephrogenesis. J Am Soc Nephrol 24:77–87

    Article  CAS  PubMed  Google Scholar 

  • Neto A, Mercader N, Gomez-Skarmeta JL (2012) The Osr1 and Osr2 genes act in the pronephric anlage downstream of retinoic acid signaling and upstream of Wnt2b to maintain pectoral fin development. Development 139:301–311

    Article  CAS  PubMed  Google Scholar 

  • Niehrs C (2004) Regionally specific induction by the Spemann-Mangold organizer. Nat Rev Genet 5:425–434

    Article  CAS  PubMed  Google Scholar 

  • Obara T, Mangos S, Liu Y, Zhao J, Wiessner S, Kramer-Zucker AG, Olale F, Schier AF, Drummond IA (2006) Polycystin-2 immunolocalization and function in zebrafish. J Am Soc Nephrol 17:2706–2718

    Article  CAS  PubMed  Google Scholar 

  • Obara-Ishihara T, Kuhlman J, Niswander L, Herzlinger D (1999) The surface ectoderm is essential for nephric duct formation in intermediate mesoderm. Development 126:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • O’Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ (2011) Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 358:318–330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ott E, Wendik B, Srivastava M, Pacho F, Tochterle S, Salvenmoser W, Meyer D (2015) Pronephric tubule morphogenesis in zebrafish depends on Mnx mediated repression of irx1b within the intermediate mesoderm. Dev Biol 411:101–114

    Article  PubMed  CAS  Google Scholar 

  • Pathak N, Obara T, Mangos S, Liu Y, Drummond IA (2007) The zebrafish fleer gene encodes an essential regulator of cilia tubulin polyglutamylation. Mol Biol Cell 18:4353–4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak N, Austin-Tse CA, Liu Y, Vasilyev A, Drummond IA (2014) Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function. Mol Biol Cell 25:1836–1844

    Article  PubMed  PubMed Central  Google Scholar 

  • Pazour GJ (2004) Comparative genomics: prediction of the ciliary and basal body proteome. Curr Biol 14:R575–R577

    Article  CAS  PubMed  Google Scholar 

  • Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125:3063–3074

    Article  CAS  PubMed  Google Scholar 

  • Pham VN, Roman BL, Weinstein BM (2001) Isolation and expression analysis of three zebrafish angiopoietin genes. Dev Dyn 221:470–474

    Article  CAS  PubMed  Google Scholar 

  • Pyati UJ, Cooper MS, Davidson AJ, Nechiporuk A, Kimelman D (2006) Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 133:2275–2284

    Article  CAS  PubMed  Google Scholar 

  • Reggiani L, Raciti D, Airik R, Kispert A, Brandli AW (2007) The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21:2358–2370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodaway A, Takeda H, Koshida S, Broadbent J, Price B, Smith JC, Patient R, Holder N (1999) Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-beta family signals and discrimination of mesoderm and endoderm by FGF. Development 126:3067–3078

    Article  CAS  PubMed  Google Scholar 

  • Rottbauer W, Baker K, Wo ZG, Mohideen MA, Cantiello HF, Fishman MC (2001) Growth and function of the embryonic heart depend upon the cardiac-specific L-type calcium channel alpha1 subunit. Dev Cell 1:265–275

    Article  CAS  PubMed  Google Scholar 

  • Ryan G, Steele-Perkins V, Morris JF, Rauscher FJ 3rd, Dressler GR (1995) Repression of Pax-2 by WT1 during normal kidney development. Development 121:867–875

    Article  CAS  PubMed  Google Scholar 

  • Satir P, Christensen ST (2007) Overview of structure and function of mammalian cilia. Annu Rev Physiol 69:377–400

    Article  CAS  PubMed  Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science (New York, NY) 311:629–632

    Article  CAS  Google Scholar 

  • Schnabel E, Dekan G, Miettinen A, Farquhar MG (1989) Biogenesis of podocalyxin – the major glomerular sialoglycoprotein – in the newborn rat kidney. Eur J Cell Biol 48:313–326

    CAS  PubMed  Google Scholar 

  • Schnerwitzki D, Perner B, Hoppe B, Pietsch S, Mehringer R, Hänel F, Englert C (2014) Alternative splicing of Wilms tumor suppressor 1 (Wt1) exon 4 results in protein isoforms with different functions. Dev Biol 393:24–32

    Article  CAS  PubMed  Google Scholar 

  • Schrimpf C, Xin C, Campanholle G, Gill SE, Stallcup W, Lin SL, Davis GE, Gharib SA, Humphreys BD, Duffield JS (2012) Pericyte TIMP3 and ADAMTS1 modulate vascular stability after kidney injury. J Am Soc Nephrol 23:868–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehnert AJ, Huq A, Weinstein BM, Walker C, Fishman M, Stainier DY (2002) Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31:106–110

    Article  CAS  PubMed  Google Scholar 

  • Serluca FC, Fishman MC (2001) Pre-pattern in the pronephric kidney field of zebrafish. Development 128:2233–2241

    Article  CAS  PubMed  Google Scholar 

  • Serluca FC, Drummond IA, Fishman MC (2002) Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol 12:492–497

    Article  CAS  PubMed  Google Scholar 

  • Seufert DW, Brennan HC, DeGuire J, Jones EA, Vize PD (1999) Developmental basis of pronephric defects in Xenopus body plan phenotypes. Dev Biol 215:233–242

    Article  CAS  PubMed  Google Scholar 

  • Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A (2013) Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496:363–366

    Article  CAS  PubMed  Google Scholar 

  • Singhal PC, Sagar S, Garg P (1996) Simulated glomerular pressure modulates mesangial cell 72 kDa metalloproteinase activity. Connect Tissue Res 33:257–263

    Article  CAS  PubMed  Google Scholar 

  • Skouloudaki K, Puetz M, Simons M, Courbard JR, Boehlke C, Hartleben B, Engel C, Moeller MJ, Englert C, Bollig F, Schafer T, Ramachandran H, Mlodzik M, Huber TB, Kuehn EW, Kim E, Kramer-Zucker A, Walz G (2009) Scribble participates in Hippo signaling and is required for normal zebrafish pronephros development. Proc Natl Acad Sci USA 106:8579–8584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slanchev K, Putz M, Schmitt A, Kramer-Zucker A, Walz G (2011) Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum Mol Genet 20:3119–3128

    Article  CAS  PubMed  Google Scholar 

  • Spemann H, Mangold H (1923) Induction of embryonic primordia by implantation of organizers from a different species. Int J Dev Biol 45:13–38

    Google Scholar 

  • Sullivan-Brown J, Schottenfeld J, Okabe N, Hostetter CL, Serluca FC, Thiberge SY, Burdine RD (2008) Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev Biol 314:261–275

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Hopkins N (2001) vhnf1, the MODY5 and familial GCKD-associated gene, regulates regional specification of the zebrafish gut, pronephros, and hindbrain. Genes Dev 15:3217–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Amsterdam A, Pazour GJ, Cole DG, Miller MS, Hopkins N (2004) A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney. Development 131:4085–4093

    Article  CAS  PubMed  Google Scholar 

  • Takeda T, Go WY, Orlando RA, Farquhar MG (2000) Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell 11:3219–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena JJ, Neto A, de la Calle-Mustienes E, Bras-Pereira C, Casares F, Gomez-Skarmeta JL (2007) Odd-skipped genes encode repressors that control kidney development. Dev Biol 301:518–531

    Article  CAS  PubMed  Google Scholar 

  • Thisse B, Thisse C (2004) Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission. http://zfin.org

  • Thisse C, Thisse B (2005) High throughput expression analysis of ZF-models consortium clones. ZFIN Direct Data Submission. http://zfin.org

  • Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. ZFIN Direct Data Submission. http://zfin.org

  • Tian Y, Kolb R, Hong JH, Carroll J, Li D, You J, Bronson R, Yaffe MB, Zhou J, Benjamin T (2007) TAZ promotes PC2 degradation through a SCFbeta-Trcp E3 ligase complex. Mol Cell Biol 27:6383–6395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomar R, Mudumana SP, Pathak N, Hukreide NA, Drummond IA (2014) osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol ASN. 2013121327

    Google Scholar 

  • Torres M, Gomez-Pardo E, Dressler GR, Gruss P (1995) Pax-2 controls multiple steps of urogenital development. Development 121:4057–4065

    Article  CAS  PubMed  Google Scholar 

  • Tsujikawa M, Malicki J (2004) Intraflagellar transport genes are essential for differentiation and survival of vertebrate sensory neurons. Neuron 42:703–716

    Article  CAS  PubMed  Google Scholar 

  • Tucker JA, Mintzer KA, Mullins MC (2008) The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. Dev Cell 14:108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, Drummond IA (2009) Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 7:e9

    Article  PubMed  CAS  Google Scholar 

  • Vasilyev A, Liu Y, Hellman N, Pathak N, Drummond IA (2012) Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros. PLoS One 7:e39992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R (2005) Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Dev Biol 288:582–594

    Article  CAS  PubMed  Google Scholar 

  • Wanner A, Salathe M, O'Riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1868–1902

    Article  CAS  PubMed  Google Scholar 

  • Warga RM, Nusslein-Volhard C (1999) Origin and development of the zebrafish endoderm. Development 126:827–838

    Article  CAS  PubMed  Google Scholar 

  • Warga RM, Mueller RL, Ho RK, Kane DA (2013) Zebrafish Tbx16 regulates intermediate mesoderm cell fate by attenuating Fgf activity. Dev Biol 383:75–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitesell TR, Kennedy RM, Carter AD, Rollins EL, Georgijevic S, Santoro MM, Childs SJ (2014) An alpha-smooth muscle actin (acta2/alphasma) zebrafish transgenic line marking vascular mural cells and visceral smooth muscle cells. PLoS One 9:e90590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wingert R, Davidson A (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127

    Article  CAS  PubMed  Google Scholar 

  • Wingert RA, Davidson AJ (2011) Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn 240:2011–2027

    Article  CAS  PubMed  Google Scholar 

  • Wingert RA, Selleck R, Yu J, Song H-D, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938

    Article  CAS  PubMed  Google Scholar 

  • Woo K, Fraser SE (1995) Order and coherence in the fate map of the zebrafish nervous system. Development 121:2595–2609

    Article  CAS  PubMed  Google Scholar 

  • Xu PF, Houssin N, Ferri-Lagneau KF, Thisse B, Thisse C (2014) Construction of a vertebrate embryo from two opposing morphogen gradients. Science (New York, NY) 344:87–89

    Article  CAS  Google Scholar 

  • Yasuda T, Kondo S, Homma T, Harris RC (1996) Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98:1991–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Liu Q, Austin C, Drummond I, Pierce EA (2012) Knockdown of ttc26 disrupts ciliogenesis of the photoreceptor cells and the pronephros in zebrafish. Mol Biol Cell 23:3069–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yuan S, Vasilyev A, Amin Arnaout M (2015) The transcriptional coactivator Taz regulates proximodistal patterning of the pronephric tubule in zebrafish. Mech Dev 138:328–335

    Article  CAS  PubMed  Google Scholar 

  • Zust B, Dixon KE (1975) The effect of u.v. irradiation of the vegetal pole of Xenopus laevis eggs on the presumptive primordial germ cells. J Embryol Exp Morpholog 34:209–220

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Davidson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Naylor, R.W., Qubisi, S.S., Davidson, A.J. (2017). Zebrafish Pronephros Development. In: Miller, R. (eds) Kidney Development and Disease. Results and Problems in Cell Differentiation, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-51436-9_2

Download citation

Publish with us

Policies and ethics