Skip to main content

In Situ Wafer Curvature Relaxation Measurements to Determine Surface Exchange Coefficients and Thermo-chemically Induced Stresses

  • Chapter
  • First Online:
Electro-Chemo-Mechanics of Solids

Part of the book series: Electronic Materials: Science & Technology ((EMST))

Abstract

The curvature relaxation technique is a new, electrode-free, in situ technique for simultaneously measuring the chemical oxygen surface exchange coefficient (k) and stress state \(\left( \lambda \right)\) of a thin or thick, dense or porous mechano-chemically active film atop a dense inert substrate. This chapter presents (1) an overview of the technique, (2) a detailed derivation of the fitting equations used to extract k from curvature relaxation experiments, (3) a discussion of the technique’s benefits and limitations, and (4) sample MATLAB code to predict the stress distributions found within dense thin or thick film bilayers as a function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\alpha\) :

Optical adsorption coefficient

\(\alpha_{\text{c}}\) :

Volumetric chemical expansion coefficient

\(\alpha_{{{\text{t}}_{\text{f}} }}\) :

Film thermal expansion coefficient

\(\alpha_{{{\text{t}}_{\text{S}} }}\) :

Substrate thermal expansion coefficient

\(A_{i}\) :

Surface area fraction over which process i occurs

\(\beta_{m}\) :

mth root of Eq. 5.13

\(c\) :

Instantaneous film oxygen vacancy concentration

\(c_{\text{o}}\) :

Original film oxygen vacancy concentration

\(c_{\infty }\) :

New, \({p\text{O}}_{ 2}\)-equilibrated film oxygen vacancy concentration

\(c\left( {x,t} \right)\) :

Film oxygen vacancy concentration as a function of position and time

\(\delta\) :

Oxygen nonstoichiometry

\(\Delta\) :

Difference in

\(d\) :

CCD-detected laser beam array inter-spot spacing

\(d_{\text{o}}\) :

Inter-spot spacing for the parallel beams in the original, unreflected laser array

\(D\) :

Oxygen vacancy diffusivity

\(\epsilon_{\text{c}}\) :

Volumetric chemically induced film strain

\(\epsilon_{\text{c}} (t)\) :

Volumetric chemically induced film strain at time t

\(\epsilon_{{\text{c}\infty }}\) :

New, \({p\text{O}}_{ 2}\)-equilibrated, volumetric chemically induced film strain

\(\epsilon_{\text{f}}\) :

Film strain

\(\epsilon_{\text{t}}\) :

Thermal mismatch strain

\(E_{\text{f}}\) :

Film Young’s modulus

\(E_{\text{S}}\) :

Substrate Young’s modulus

\(h_{\text{f}}\) :

Film thickness

\(h_{\text{S}}\) :

Substrate thickness

\(J\) :

Oxygen flux

\(\kappa\) :

Curvature

\(\kappa R\) :

Curvature relaxation

\(\kappa (t)\) :

Sample curvature at time t

\(\kappa_{\text{o}}\) :

Initial sample curvature

\(\kappa_{\infty }\) :

New, \({p\text{O}}_{ 2}\)-equilibrated sample curvature

k :

Chemical oxygen surface exchange coefficient

\(\lambda\) :

Stress state

\(\lambda_{\text{c}}\) :

Chemically induced stress

\(\lambda_{\text{f}}\) :

Absolute film stress

\(\lambda_{\text{f}} (t)\) :

Film stress at time t

\(\lambda_{\text{o}}\) :

Initial film stress

\(\lambda_{{{\text{f}}\infty }}\) :

New \({p\text{O}}_{ 2}\)-equilibrated film stress

\(\bar{\lambda }_{\text{St}}\) :

Film stress predicted from Stoney’s equation

\(\lambda_{\text{t}}\) :

Thermal expansion mismatch stress

L :

Sample to CCD distance

\(L_{\text{c}}\) :

Characteristic thickness for oxygen transport

LSF64:

La0.6Sr0.4FeO3−δ

\(M_{i}\) :

Electrical mobility of species i

\(M_{\text{f}}\) :

Film biaxial modulus

\(M_{\text{S}}\) :

Substrate biaxial modulus

\(N\) :

Number of oxygen atoms per formula unit of non-defective material

\({p\text{O}}_{ 2}\) :

Oxygen partial pressure

\(q_{i}\) :

Electrical charge of species i

\(\sigma\) :

Total electrical conductivity

\(S_{\text{P}}\) :

Total surface area of the pores in a porous film

SOEC:

Solid oxide electrolysis cell

SOFC:

Solid oxide fuel cell

\(\theta\) :

Laser beam array angle of reflection

t :

Time

T :

Temperature

\(\upsilon_{\text{f}}\) :

Film Poisson’s ratio

\(\upsilon_{\text{S}}\) :

Substrate Poisson’s ratio

\(V\) :

Final volume

\(V^{*}\) :

Instantaneous unit cell volume divided by the number of formula units per non-defective unit cell

\(V_{\text{o}}\) :

Initial volume

\(V_{\text{S}}\) :

Total volume of the solid material in a porous film

\(x\) :

Distance from the film–substrate interface

YSZ:

Yttria stabilized zirconia

\(\zeta\) :

Film molar optical extinction coefficient

z :

Film-normal distance from the substrate mid-plane

References

  1. Trovarelli, A. (1996). Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews Science Engineering, 38, 439–509. doi:10.1080/01614949608006464

  2. Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., et al. (2010). High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science, 330(6012), 1797–1801. doi:10.1126/science.1197834

  3. Stefanik, T. S., & Tuller, H. L. (2001). Ceria-based gas sensors. Journal of the European Ceramic Society, 21(10–11), 1967–1970. http://dx.doi.org/10.1016/s0955-2219(01)00152-2

  4. Bouwmeester, H. J. M., & Burggraff, A. J. (1997). Dense ceramic membranes for oxygen separation. In P. J. Gellings & H. J. M. Bouwmeester (Eds.), The CRC handbook of solid state electrochemistry (pp. 481–554). New York: CRC Press.

    Google Scholar 

  5. Shao, Z., & Haile, S. M. (2004). A high-performance cathode for the next generation of solid oxide fuel cells. Nature, 431, 170–173. doi:10.1038/nature02863

  6. Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414, 345–352. doi:10.1038/35104620

  7. Atkinson, A., Barnett, S. A., Gorte, R. J., Irvine, J. T. S., McEvoy, A. J., Mogensen, M. B., et al. (2004). Advanced anodes for high temperature fuel cells. Nature Materials, 3, 17–27. doi:10.1038/nmat1040

  8. Sholklapper, T. Z., Kurokawa, H., Jacobson, C. P., Visco, S. J., & De Jonghe, L. C. (2007). Nanostructured solid oxide fuel cell electrodes. Nano Letters, 7(7), 2136–2141. doi:10.1021/nl071007i

  9. Nicholas, J. D., Wang, L., Call, A. V., & Barnett, S. A. (2012). Use of the simple infiltration microstructure polarization loss estimation (SIMPLE) model to predict the measured polarization resistance of infiltrated nano-composite solid oxide fuel cell cathodes. Physical Chemistry Chemical Physics: PCCP, 14(44), 15379–15392. doi:10.1039/C2CP43370B

  10. Ebbesen, S. D., Jensen, S. H., Hauch, A., & Mogensen, M. B. (2014). High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chemical Reviews, 114(21), 10697–10734. doi:10.1021/cr5000865

  11. Karthikeyan, A., & Ramanathan, S. (2008). Oxygen surface exchange studies in thin film Gd-doped ceria. Applied Physics Letters, 92(24), 243109-243101–243109-243103. http://dx.doi.org/10.1063/1.2938028

  12. Ried, P., Holtappels, P., Wichser, A., Ulrich, A., & Graule, T. (2008). Synthesis and characterization of La0.6Sr0.4Co0.2Fe0.8O3-x and Ba0.5Sr0.5Co0.8Fe0.2O3-x. Journal of the Electrochemical Society, 155(10), B1029–B1035. doi:10.1149/1.2960873

  13. Plonczak, P., Søgaard, M., Bieberle-Hütter, A., Hendriksen, P. V., & Gauckler, L. J. (2012). Electrochemical characterization of La0.58Sr0.4Co0.2Fe0.8O3-δ thin film electrodes prepared by pulsed laser deposition. Journal of the Electrochemical Society, 159(5), B471–B482. doi:10.1149/2.043204jes

  14. tenElshof, J. E., Lankhorst, M. H. R., & Bouwmeester, H. J. M. (1997). Oxygen exchange and diffusion coefficients of strontium-doped lanthanum ferrites by electrical conductivity relaxation. Journal of the Electrochemical Society, 144(3), 1060–1067. http://dx.doi.org/10.1149/1.1837531

  15. Mosleh, M., Sogaard, M., & Hendriksen, P. V. (2009). Kinetics and mechanisms of oxygen surface exchange on La0.6Sr0.4FeO3-δ thin films. Journal of the Electrochemical Society, 156(4), B441–B457. doi:10.1149/1.3062941

  16. Sogaard, M., Vang Hendriksen, P., & Mogensen, M. (2007). Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum ferrite. Journal of Solid State Chemistry, 180(4), 1489–1503. http://dx.doi.org/10.1149/1.2789806

  17. Yang, Q., Burye, T. E., Lunt, R. R., & Nicholas, J. D. (2013). In situ oxygen surface exchange coefficient measurements on lanthanum strontium ferrite thin films via the curvature relaxation method. Solid State Ionics, 249–250, 123–128. doi:10.1016/j.ssi.2013.07.025

  18. Zhao, L., Perry, N. H., Daio, T., Sasaki, K., & Bishop, S. R. (2015). Improving the Si impurity tolerance of Pr0.1Ce0.9O2-δ SOFC electrodes with reactive surface additives. Chemistry of Materials, 27(8), 3065–3070. http://dx.doi.org/10.1021/acs.chemmater.5b00501

  19. Kerman, K., Ko, C., & Ramanathan, S. (2012). Orientation dependent oxygen exchange kinetics on single crystal SrTiO3 surfaces. Physical Chemistry Chemical Physics: PCCP, 14(34), 11953–11960. doi:10.1039/c2cp41918a

  20. Kubicek, M., Cai, Z. H., Ma, W., Yildiz, B., Hutter, H., & Fleig, J. (2013). Tensile lattice strain accelerates oxygen surface exchange and diffusion in La1-xSrxCoO3-δ thin films. ACS Nano, 7(4), 3276–3286. doi:10.1021/nn305987x

  21. Chu, M., Sun, Y. K., Aghoram, U., & Thompson, S. E. (2009). Strain: A solution for higher carrier mobility in nanoscale MOSFETs. Annual Review of Materials Research, 39, 203–229. doi:10.1146/annurev-matsci-082908-145312

  22. Mayeshiba, T., & Morgan, D. (2015). Strain effects on oxygen migration in perovskites. Physical Chemistry Chemical Physics: PCCP, 17(4), 2715–2721. doi:10.1039/c4cp05554c

  23. De Souza, R. A., Ramadan, A., & Horner, S. (2012). Modifying the barriers for oxygen-vacancy migration in fluorite-structured CeO2 electrolytes through strain: A computer simulation study. Energy & Environmental Science, 5(1), 5445–5453. doi:10.1039/c2ee02508f

  24. Yang, Q., & Nicholas, J. D. (2014). Porous thick film lanthanum strontium ferrite stress and oxygen surface exchange bilayer curvature relaxation measurements. Journal of the Electrochemical Society, 161(11), F3025–F3031. doi:10.1149/2.0051411jes

  25. Stoney, G. G. (1909). The tension of metallic films deposited by electrolysis. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 82(553), 172–175. doi:10.1098/rspa.1909.0021

  26. Freund, L. B., & Suresh, S. (2003). Thin film materials: Stress, defect formation and surface evolution. New York, NY: Cambridge University Press.

    Google Scholar 

  27. Klein, C. A. (2000). How accurate are Stoney’s equation and recent modifications. Journal of Applied Physics, 88(9), 5487–5489. doi:10.1063/1.1313776

  28. Moulson, A. J., & Herbert, J. M. (1997). Electroceramics. New York: Chapman and Hall.

    Google Scholar 

  29. Kimura, Y., Kushi, T., Hashimoto, S.-I., Amezawa, K., & Kawada, T. (2012). Influences of temperature and oxygen partial pressure on mechanical properties of La0.6Sr0.4Co1-yFeyO3-δ. Journal of the American Ceramic Society, 95(8), 2608–2613. doi:10.1111/j.1551-2916.2012.05265.x

  30. Kushi, T., Sato, K., Unemoto, A., Hashimoto, S., Amezawa, K., & Kawada, T. (2011). Elastic modulus and internal friction of SOFC electrolytes at high temperatures under controlled atmospheres. Journal of Power Sources, 196(19), 7989–7993. doi:10.1016/j.jpowsour.2011.05.040

  31. Fan, X., Case, E. D., Yang, Q., & Nicholas, J. D. (2013). Room temperature elastic properties of gadolinia-doped ceria as a function of porosity. Ceramic International, 39(6), 6877–6886. doi:10.1016/j.ceramint.2013.02.022

  32. Ren, F., Case, E. D., Morrison, A., Tafesse, M., & Baumann, M. J. (2009). Resonant ultrasound spectroscopy measurement of Young’s modulus, shear modulus and poisson’s ratio as a function of porosity for alumina and hydroxyapatite. Philosophical Magazine, 89(14), 1163–1182. doi:10.1080/14786430902915388

  33. Luo, J., & Stevens, R. (1999). Porosity dependence of elastic moduli and hardness of 3Y-TZP ceramics. Ceramic International, 25(3), 281–286. doi:10.1016/s0272-8842(98)00037-6

  34. Coble, R. L., & Kingery, W. D. (1956). Effect of porosity on physical properties of sintered alumina. Journal of the American Ceramic Society, 39(11), 377–385. doi:10.1111/j.1151-2916.1956.tb15608.x

  35. Hsueh, C. H., De Jonghe, L. C., & Lee, C. S. (2006). Modeling of thermal stresses in joining two layers with multi- and graded interlayers. Journal of the American Ceramic Society, 89(1), 251–257. doi:10.1111/j.1551-2916.2005.00658.x

  36. Crank, J. (1975). The mathematics of diffusion. London: Oxford University Press.

    Google Scholar 

  37. Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of heat in solids. New York: Oxford Science.

    Google Scholar 

  38. Yasuda, I., & Hikita, T. (1994). Precise determination of the chemical diffusion coefficient of calcium-doped lanthanum chromites by means of electrical conductivity relaxation. Journal of the Electrochemical Society, 141(5), 1268–1273. doi:10.1149/1.2054908

  39. Kim, G., Wang, S., Jacobson, A. J., & Chen, C. L. (2006). Measurement of oxygen transport kinetics in epitaxial La2NiO4 + δ thin films by electrical conductivity relaxation. Solid State Ionics, 177(17–18), 1461–1467. doi:10.1016/j.ssi.2006.07.013

  40. Ko, C. H., Karthikeyan, A., & Ramanathan, S. (2011). Studies on oxygen chemical surface exchange and electrical conduction in thin film nanostructured titania at high temperatures and varying oxygen pressure. Journal of Chemical Physics, 134(1), 014704-014701–014704-014709. http://dx.doi.org/10.1063/1.3524341

  41. Kim, G., Wang, S., Jacobson, A. J., Yuan, Z., Donner, W., Chen, C. L., et al. (2006). Oxygen exchange kinetics of epitaxial PrBaCo2O5+d thin films. Applied Physics Letters, 88(2), 024103-024101–024103-024103. http://dx.doi.org/10.1063/1.2163257

  42. Ganeshananthan, R., & Virkar, A. V. (2005). Measurement of surface exchange coefficient on porous La0.6Sr0.4CoO3-δ samples by conductivity relaxation. Journal of the Electrochemical Society, 152(8), A1620–A1628. doi:10.1149/1.1940828

  43. Kim, J. J., Bishop, S. R., Thompson, N. J., Chen, D., & Tuller, H. L. (2014). Investigation of nonstoichiometry in oxide thin films by simultaneous in situ optical absorption and chemical capacitance measurements: Pr-doped ceria, a case study. Chemistry of Materials, 26(3), 1374–1379. doi:10.1021/cm403066p

  44. Katsuki, M., Wang, S., Yasumoto, K., & Dokiya, M. (2002). The oxygen transport in Gd-doped ceria. Solid State Ionics, 154–155, 589–595. doi:10.1016/s0167-2738(02)00500-3

  45. Choi, M. B., Jeon, S. Y., Yang, H. S., Park, J. Y., & Song, S. J. (2011). Determination of oxygen chemical diffusivity from chemical expansion relaxation for BaCo0.7Fe0.22Nb0.08O3-δ. Journal of the Electrochemical Society, 158(2), B189–B193. doi:10.1149/1.355512210.1149/1.3515070

  46. Noll, F., Munch, W., Denk, I., & Maier, J. (1996). SrTiO3 as a prototype of a mixed conductor. Conductivities, oxygen diffusion and boundary effects. Solid State Ionics, 86–88, 711–717. doi:10.1016/0167-2738(96)00155-5

  47. Nicholas, J. D. (2016). Practical considerations for reliable stress and oxygen surface exchange coefficients from bilayer curvature relaxation measurements. Extreme Mechanics Letters, 9(3), 405–421. doi:10.1016/j.eml.2016.04.006

  48. Lankhorst, M. H. R., & Bouwmeester, H. J. M. (1997). Determination of oxygen nonstoichiometry and diffusivity in mixed conducting oxides by oxygen coulometric titration: I. Chemical diffusion in La0.8Sr0.2CoO3-δ. Journal of the Electrochemical Society, 144(4), 1261–1267. doi:10.1149/1.1837580

  49. Fischer, E., & Hertz, J. L. (2012). Measurability of the diffusion and surface exchange coefficients using isotope exchange with thin film and traditional samples. Solid State Ionics, 218, 18–24. doi:10.1016/j.ssi.2012.05.003

  50. Cox-Galhotra, R. A., & McIntosh, S. (2010). Unreliability of simultaneously determining k-chem and D-chem via conductivity relaxation for surface-modified La0.6Sr0.4Co0.2Fe0.8O3-δ. Solid State Ionics, 181(31–32), 1429–1436. doi:10.1016/j.ssi.2010.08.006

  51. Orlovskaya, N., Anderson, H., Brodnikovskyy, M., Lugovy, M., & Reece, M. J. (2006). Inelastic deformation behavior of La0.6Sr0.4FeO3 perovskite. Journal of applied physics, 100(2), 026102-026101–026102-026104. http://dx.doi.org/10.1063/1.2218026

  52. tenElshof, J. E., Lankhorst, M. H. R., & Bouwmeester, H. J. M. (1997). Chemical diffusion and oxygen exchange of La0.6Sr0.4Co0.6Fe0.4O3-δ. Solid State Ionics, 99(1–2), 15–22. http://dx.doi.org/10.1016/S0167-2738(97)00263-4

  53. Tsuchiya, M., Bojarczuk, N. A., Guha, S., & Ramanathan, S. (2009). Microstructural effects on electrical conductivity relaxation in nanoscale ceria thin films. Journal of Chemical Physics, 130(17), 174711-174711–174711-174719. http://dx.doi.org/10.1063/1.3126092

  54. Smith, J. B., & Norby, T. (2006). On the steady-state oxygen permeation through La2NiO4 + δ membranes. Journal of the Electrochemical Society, 153(2), A233–A238. doi:10.1149/1.2138679

  55. Kim, S., Yang, Y. L., Jacobson, A. J., & Abeles, B. (1998). Diffusion and surface exchange coefficients in mixed ionic electronic conducting oxides from the pressure dependence of oxygen permeation. Solid State Ionics, 106(3–4), 189–195. doi:10.1016/S0167-2738(97)00492-X

  56. Diethelm, S., & Van herle, J. (2004). Electrochemical characterisation of oxygen nonstoichiometry and transport in mixed conducting oxides—Application to La0.4Ba0.6Fe0.8Co0.2O3-δ. Solid State Ionics, 174(1–4), 127–134. http://dx.doi.org/10.1016/j.ssi.2004.07.028

  57. Sahibzada, M., Morton, W., Hartley, A., Mantzavinos, D., & Metcalfe, I. S. (2000). A simple method for the determination of surface exchange and ionic transport kinetics in oxides. Solid State Ionics, 136, 991–996. doi:10.1016/s0167-2738(00)00517-8

  58. Jamnik, J., & Maier, J. (1999). Treatment of the impedance of mixed conductors—Equivalent circuit model and explicit approximate solutions. Journal of the Electrochemical Society, 146(11), 4183–4188. doi:10.1149/1.1392611

  59. Wang, L., Merkle, R., & Maier, J. (2010). Surface kinetics and mechanism of oxygen incorporation into Ba1-xSrxCoyFe1-yO3-δ SOFC microelectrodes. Journal of the Electrochemical Society, 157(12), B1802–B1808. doi:10.1149/1.3494224

  60. Moreno, R., García, P., Zapata, J., Roqueta, J., Chaigneau, J., & Santiso, J. (2013). Chemical strain kinetics induced by oxygen surface exchange in epitaxial films explored by time-resolved X-ray diffraction. Chemistry of Materials. doi:10.1021/cm401714d

  61. Armstrong, E. N., Duncan, K. L., Oh, D. J., Weaver, J. F., & Wachsman, E. D. (2011). Determination of surface exchange coefficients of LSM, LSCF, YSZ, GDC constituent materials in composite SOFC cathodes. Journal of the Electrochemical Society, 158(5), B492–B499. doi:10.1149/1.3555122

  62. De Souza, R. A., & Kilner, J. A. (1999). Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites: Part II. Oxygen surface exchange. Solid State Ionics, 126(1–2), 153–161. doi:10.1016/S0167-2738(99)00228-3

  63. Chater, R. J., Carter, S., Kilner, J. A., & Steele, B. C. H. (1992). Development of a novel SIMS technique for oxygen self-diffusion and surface exchange coefficient measurements in oxides of high diffusivity. Solid State Ionics, 53, 859–867. doi:10.1016/0167-2738(92)90266-r

  64. Bishop, S. R., Duncan, K. L., & Wachsman, E. D. (2009). Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Materialia, 57(12), 3596–3605. doi:10.1016/j.actamat.2009.04.017

  65. Bishop, S. R., Duncan, K. L., & Wachsman, E. D. (2009). Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochimica Acta, 54(5), 1436–1443. doi:10.1016/j.electacta.2008.09.026

  66. Chiang, H. W., Blumenthal, R. N., & Fournelle, R. A. (1993). A high-temperature lattice-parameter and dilatometer study of the defect structure of nonstoichiometric cerium dioxide. Solid State Ionics, 66(1–2), 85–95. doi:10.1016/0167-2738(93)90031-w

  67. Kharton, V. V., Yaremchenko, A. A., Patrakeev, M. V., Naumovich, E. N., & Marques, F. M. B. (2003). Thermal and chemical induced expansion of La0.3Sr0.7(Fe, Ga)O3-δ ceramics. Journal of the European Ceramic Society, 23(9), 1417–1426. doi:10.1016/s0955-2219(02)00308-4

  68. Bishop, S. R., Duncan, K. L., & Wachsman, E. D. (2010). Thermo-chemical expansion in strontium-doped lanthanum cobalt iron oxide. Journal of the American Ceramic Society, 93(12), 4115–4121. doi:10.1111/j.1551-2916.2010.03991.x

  69. Adler, S. B. (2001). Chemical expansivity of electrochemical ceramics. Journal of the American Ceramic Society, 84(9), 2117–2119. doi:10.1111/j.1151-2916.2001.tb00968.x

  70. Chen, X. Y., Yu, J. S., & Adler, S. B. (2005). Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1-xSrxCoO3-δ). Chemistry of Materials, 17(17), 4537–4546. doi:10.1021/cm050905h

  71. Vracar, M., Kuzmin, A., Merkle, R., Purans, J., Kotomin, E. A., Maier, J., et al. (2007). Jahn-Teller distortion around Fe4+ in SrFexTi1-xO3-δ from X-ray absorption spectroscopy, X-ray diffraction, and vibrational spectroscopy. Physical Review B, 76(17), 174107-174101–174107-174110. http://dx.doi.org/10.1103/PhysRevB.76.174107

  72. McIntosh, S., Vente, J. F., Haije, W. G., Blank, D. H. A., & Bouwmeester, H. J. M. (2006). Oxygen stoichiometry and chemical expansion of Ba0.5Sr0.5Co0.8Fe0.2O3-δ measured by in situ neutron diffraction. Chemistry of Materials, 18(8), 2187–2193. doi:10.1021/cm052763x

  73. Larsen, P. H., Hendriksen, P. V., & Mogensen, M. (1997). Dimensional stability and defect chemistry of doped lanthanum chromites. Journal of Thermal Analysis, 49(3), 1263–1275. doi:10.1007/bf01983683

  74. Miyoshi, S., Hong, J. O., Yashiro, K., Kaimai, A., Nigara, Y., Kawamura, K., et al. (2003). Lattice expansion upon reduction of perovskite-type LaMnO3 with oxygen-deficit nonstoichiometry. Solid State Ionics, 161(3–4), 209–217. doi:10.1016/s0167-2738(03)00281-9

  75. Yang, Q. (2014). Development and use of a new curvature relaxation technique to measure the in situ oxygen surface exchange coefficients and stress of lanthanum strontium ferrite films. PhD Thesis, Michigan State University.

    Google Scholar 

  76. Mosleh, M., Pryds, N., & Hendriksen, P. V. (2007). Thickness dependence of the conductivity of thin films (La, Sr)FeO3 deposited on MgO single crystal. Materials Science and Engineering: B, 144(1–3), 38–42. doi:10.1016/j.mseb.2007.07.089

Download references

Acknowledgements

This work was supported by United States National Science Foundation CAREER Award No. CBET-1254453. The author would like to thank Mr. Eric Straley for providing the Appendix 1 MATLAB code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason D. Nicholas .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Sample Film Stress and Bilayer Curvature MATLAB Code

Appendix 2: Relating Normalized Oxygen Concentration and Film Strain Changes

Based on the relationship between the instantaneous oxygen vacancy concentration (c), the number of oxygen atoms per formula unit of non-defective material (N, which is 3 for ABO3 perovskite materials), the oxygen nonstoichiometry (\(\delta\), which is defined as the number of oxygen atoms missing per formula unit of material) and the volume occupied by one formula unit of material (\(V^{*}\), which is equal to the unit cell volume for materials such as ABO3 perovskites which contain 1 formula unit per unit cell), i.e.,

$$c = \frac{N - \delta }{{V^{*} }}$$

the difference between an instantaneous and original oxygen vacancy concentration that exists at a particular point within an oxygen exchange material that is equilibrating to a new \({p\text{O}}_{ 2}\):

$$c - c_{\text{o}} = \frac{N - \delta }{{V^{*} }} - \frac{{N - \delta_{\text{o}} }}{{V_{\text{o}}^{*} }}$$

where the naught subscript denotes the original state of the material. Applying the fact that:

$$\delta = \delta_{\text{o}} +\Delta \delta$$

results in:

$$c - c_{\text{o}} = \frac{{N - \delta_{\text{o}} }}{{V^{*} }} - \frac{{\Delta \delta }}{{V^{*} }} - \frac{{N - \delta_{\text{o}} }}{{V_{\text{o}}^{*} }}$$

Rearranging and applying the linear relationship between δ, the volumetric chemical strain \(( \epsilon_{\text{c}} )\), and the volumetric chemical expansion coefficient \((\alpha_{\text{c}} )\) i.e.,

$$\epsilon_{\text{c}} = \alpha_{\text{c}}\Delta \delta$$

results in:

$$c - c_{\text{o}} = \frac{{N - \delta_{\text{o}} }}{{V^{*} }} - \frac{{N - \delta_{\text{o}} }}{{V_{\text{o}}^{*} }} - \frac{{\epsilon_{\text{c}} }}{{\alpha_{\text{c}} V^{*} }}$$

Combining the first two right-hand terms and factoring out a \(- \left( {N - \delta_{\text{o}} } \right)\) results in:

$$c - c_{\text{o}} = \frac{{ - \left( {N - \delta_{\text{o}} } \right)\left( {V^{*} - V_{\text{o}}^{*} } \right)}}{{V^{*} V_{\text{o}}^{*} }} - \frac{{\epsilon_{\text{c}} }}{{\alpha_{\text{c}} V^{*} }}$$

Applying the definition of volumetric chemical strain , i.e.,

$$\epsilon_{\text{c}} = \frac{{V^{*} - V_{\text{o}}^{*} }}{{V_{\text{o}}^{*} }}$$

results in:

$$c - c_{\text{o}} = \frac{{ - \epsilon_{\text{c}} \left( {N - \delta_{\text{o}} } \right)}}{{V^{*} }} - \frac{{\epsilon_{\text{c}} }}{{\alpha_{\text{c}} V^{*} }}$$

Factoring out a \(- \frac{{\epsilon_{\text{c}} }}{{\alpha_{\text{c}} V^{*} }}\) results in:

$$c - c_{\text{o}} = - \frac{{\epsilon_{\text{c}} }}{{\alpha_{\text{c}} V^{*} }}\left( {1 + \alpha_{\text{c}} \left( {N - \delta_{\text{o}} } \right)} \right)$$

Performing the same analysis on \(c_{\infty } - c_{\text{o}}\) with the assumption that the final and instantaneous values of the film strain and cell volume per formula unit can be different, but that the chemical expansion coefficient is constant yields:

$$c_{\infty } - c_{\text{o}} = - \frac{{\epsilon_{{\text{c},\infty }} }}{{\alpha_{\text{c}} V_{\infty }^{*} }}\left( {1 + \alpha_{\text{c}} \left( {N - \delta_{\text{o}} } \right)} \right)$$

where \(\epsilon_{{\text{c},\infty }}\) and \(V_{\infty }^{*}\) are the final amount of strain, and the final unit cell per formula unit, in the material. Therefore:

$$\frac{{c - c_{\text{o}} }}{{{c}_{\infty } - \text{c}_{\text{o}} }} = \frac{{\epsilon_{\text{c}} V_{\infty }^{*} }}{{\epsilon_{{\text{c},\infty }} V^{*} }}$$

Substituting rearranged versions of the definition of volumetric chemical strain , i.e.,

$$\begin{aligned} V^{*} & = V_{\text{o}}^{*} (1 + \epsilon_{\text{c}} ) \\ V_{\infty }^{*} & = V_{\text{o}}^{*} (1 + \epsilon_{{\text{c},\infty }} ) \\ \end{aligned}$$

yields:

$$\frac{{c - c_{\text{o}} }}{{c_{\infty } - c_{\text{o}} }} = \frac{{\epsilon_{\text{c}} \left( {1 + \epsilon_{{\text{c},\infty }} } \right)}}{{\epsilon_{{\text{c},\infty }} \left( {1 + \epsilon_{\text{c}} } \right)}}$$

Distributing the strain terms through the bracketed terms yields:

$$\frac{{c - c_{\text{o}} }}{{c_{\infty } - c_{\text{o}} }} = \frac{{\epsilon_{\text{c}} + \epsilon_{\text{c}} \epsilon_{{\text{c},\infty }} }}{{\epsilon_{{\text{c},\infty }} + \epsilon_{\text{c}} \epsilon_{{\text{c},\infty }} }}$$

Since the strains encountered during a small \({p\text{O}}_{ 2}\) change are expected to be less than a few percent, the \(\epsilon_{\text{c}} \epsilon_{{\text{c},\infty }}\) terms are much smaller in magnitude than the \(\epsilon_{\text{c}}\) or \(\epsilon_{{\text{c},\infty }}\) terms with the result of that in a \(\kappa R\) experiment:

$$\frac{{c - c_{\text{o}} }}{{c_{\infty } - c_{\text{o}} }} = \frac{{\epsilon_{\text{c}} }}{{\epsilon_{{\text{c},\infty }} }}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nicholas, J.D. (2017). In Situ Wafer Curvature Relaxation Measurements to Determine Surface Exchange Coefficients and Thermo-chemically Induced Stresses. In: Bishop, S., Perry, N., Marrocchelli, D., Sheldon, B. (eds) Electro-Chemo-Mechanics of Solids. Electronic Materials: Science & Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-51407-9_5

Download citation

Publish with us

Policies and ethics