Skip to main content

Effect of Silicon on Removal of Phosphorus from High Phosphorus Si–Mn Alloy by CaO-Based Slag

  • Conference paper
  • First Online:
8th International Symposium on High-Temperature Metallurgical Processing

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 3933 Accesses

Abstract

The effect of silicon on removal of phosphorus from high phosphorus Si–Mn alloy was investigated at 1673 K by CaO-based slag. It was found that the dephosphorization efficiency increases significantly as increasing the silicon content, which is due to the reaction between silicon and CaO at slag/alloy interface. The relation between silicon content with oxygen activity and phosphorus activity coefficient of Si–Mn melt was determined respectively as follows:

$$ \lg \,a_{\text{O}} = - 1.55x_{\text{Si}} - 1.67;\,\ln \,r_{\text{P}} = 9.26{\text{e}}^{{\frac{{x_{\text{Si}} }}{0.0433}}} + 11.0839 $$

The carbon content in Si–Mn melt decreases continuously with the increasing silicon content, meanwhile, the decreasing rate of carbon content becomes rapid when the mole fraction of silicon is about 0.32. Si addition is beneficial for both dephosphorization process and low carbon Si–Mn alloy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. L.J. Zhu, W.U. Di, X.M. Zhao, Effect of silicon content on thermodynamics of austenite decomposition in C–Si–Mn TRIP Steels. J. Iron. Steel Res. Int. 13(3), 57–60 (2006)

    Article  Google Scholar 

  2. S.I. Rudyuk et al., Effect of sulfur and phosphorus on the properties of steel 18B. Met. Sci. Heat Treat. 16(12), 1056–1059 (1974)

    Article  Google Scholar 

  3. X.S. Wen, H.Y. Li, Y.D. Sun, Application of reduction dephosphorization on low or extra low carbon ferromanganese-silicon. Ferroalloys 42(2), 1–3 (2011)

    Google Scholar 

  4. S.P. Liu, P. Tang, Review of dephosphorization processes for ferromanganese. Ferroalloys 34(4), 5–6 (2003)

    Google Scholar 

  5. D.M. Ni, W. Cheng, S.K. Wei, Study on dephosphorization of silicomanganese ferroalloy under reducing atmosphere with metallic calcium. Iron Steel 24(9), 49–53 (1989)

    Google Scholar 

  6. T. Ogasawara et al., The activity of calcium in calcium-calcium halide fluxes. ISIJ Int. 36(Suppl), S30–S33 (1996)

    Article  Google Scholar 

  7. N. Masumitsu, K. Ito, R.J. Fruehan, Thermodynamics of Ca–CaF2 and Ca–CaCI2 systems for the dephosphorization of steel. Metall. Trans. B 19(4), 643–648 (1988)

    Article  Google Scholar 

  8. S. Tabuchi, N. Sano, Thermodynamics of phosphate and phosphide in CaO–CaF2 melts. Metall. Mater. Trans. B 15(2), 351–356 (1984)

    Article  Google Scholar 

  9. J.H. Shin, J.H. Park, Thermodynamics of reducing refining of phosphorus from Si–Mn alloy using CaO–CaF2 slag. Metall. Mater. Trans. B 43(6), 1–4 (2012)

    Article  Google Scholar 

  10. S.L. Zeng, J. Liu, H. Li, Experiments on outside furnace dephosphorization for ferromanganese-silicon. Ferroalloys 35(1), 1–5 (2004)

    Google Scholar 

  11. S.L. Zeng et al., Optimization of technics on precipitation and dephosphorization for ferromanganese-silicon. Ferroalloys 40(6), 1–5 (2009)

    Google Scholar 

  12. E. Aida, D. Min, N. Sano, Phosphorus distribution between Mn–Si melts and CaO–SiO2–MnO–CaF2 Slags, Tetsu-to-Hagane(J. Iron Steel Inst. Jpn.) 74(10), 1931–1938 (1988)

    Google Scholar 

  13. K.Y. Hong et al., Reassessment of solution properties of liquid Mn–Si alloy. ISIJ Int. 53(3), 544–546 (2013)

    Article  Google Scholar 

  14. R. Gee, T. Rosenqvist, Scand. J. Metall. 5, 57–62 (1976)

    Google Scholar 

  15. D.R. Swinbourne, W.J. Rankin, R.H. Eric, The effect of alumina in slag on manganese and silicon distributions in silicomanganese smelting. Metal. Mater. Trans. B 26(1), 59–65 (1995)

    Article  Google Scholar 

  16. S. Ueda, K. Morita, N. Sano, Thermodynamics of phosphorus in molten Si–Fe and Si–Mn alloys. Metall. Mater. Trans. B 28(6), 1151–1155 (1997)

    Article  Google Scholar 

  17. E.T. Turkdogan, R.A. Hancock, Trans. Inst. Min. Metall. 67, 573–600 (1957)

    Google Scholar 

  18. R. Ni, Z. Ma, S. Wei, Thermodynamics of Mn–Fe–C and Mn–Si–C System. Steel Res. 61, 113–116 (1990)

    Article  Google Scholar 

  19. J.P. Shin, Y.E. Lee, Assessment of Mn–Fe–Si–C melt in unified interaction parameter formalism. Metall. Mater. Trans. B 47(1), 216–227 (2016)

    Article  Google Scholar 

  20. M.K. Paek et al., Thermodynamic interactions among carbon, silicon and iron in carbon saturated manganese melts. Korean J. Met. Mater. 50(1), 45–51 (2012)

    Article  Google Scholar 

  21. K. Tang, S.E. Olsen, Computer simulation of equilibrium relations in manganese ferroalloy production. Metall. Mater. Trans. B 7(37), 599–606 (2006)

    Article  Google Scholar 

  22. S.H. Ahn et al., Thermodynamic assessment of liquid Fe–Si–C system by unified interaction parameter model. ISIJ Int. 54(4), 750–755 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zizong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Minerals, Metals & Materials Society

About this paper

Cite this paper

Zhou, Z., Zhu, Z., Ding, Y., Zhou, S. (2017). Effect of Silicon on Removal of Phosphorus from High Phosphorus Si–Mn Alloy by CaO-Based Slag. In: Hwang, JY., et al. 8th International Symposium on High-Temperature Metallurgical Processing. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-51340-9_55

Download citation

Publish with us

Policies and ethics