Skip to main content

Human Papillomaviruses (HPVs)

  • Chapter
  • First Online:
Pathology of the Cervix

Part of the book series: Essentials of Diagnostic Gynecological Pathology ((EDGP,volume 3))

  • 1356 Accesses

Abstract

HPVs are epitheliotropic viruses with double-stranded DNA genomes and eight coding genes defined as “early” or “late” depending on when they are expressed. Over 200 HPVs have been identified with 13 types considered oncogenic or high risk (HR). HPV type 16 confers the greatest risk, being responsible for around 60% of cervical cancers. HPV infection is common with a global point prevalence of around 10% and most infections are transient. The life cycle of HPV is inextricably linked with squamous epithelial differentiation and, during a productive infection, involves tightly regulated sequential gene expression at the separate epithelial layers before particle release. Some persistent infections can lead to cancer; in this scenario the productive life cycle is not completed, and deregulated expression of early oncoproteins E6 and E7 stimulates uncontrolled cellular proliferation while abrogating tumor suppressor function.

Prophylactic HPV immunization and the use of molecular HPV testing as a primary cervical screening test have been implemented in several settings. Immunization has led to a significant decrease in HPV infection and associated disease at the population level, and the high sensitivity and reproducibility of HPV testing enables screening intervals to be extended (for those who test negative) and provides options for self-sampling. Future challenges will include how to integrate and implement immunization and contemporary screening practices most optimally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lowy DR. History of papillomavirus research. In: Garcea RL, DiMaio D, editors. The papillomaviruses. New York: Springer; 2007. p. 13–28.

    Chapter  Google Scholar 

  2. Bernard H-U, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology. 2010;401(1):70–79.

    Google Scholar 

  3. de Villiers E-M, Fauquet C, Broker TR. Classification of papillomaviruses. Virology. 2004;324(1):17–27.

    Article  PubMed  Google Scholar 

  4. Doorbar J, Quint W, Banks L, Bravo IG, Stoler M, Broker TR, et al. The biology and life-cycle of human papillomaviruses. Vaccine. 2012;30(Suppl 5):F55–70.

    Article  CAS  PubMed  Google Scholar 

  5. IARC. Monographs on the evaluation of carcinogenic risks to humans, no. 100B. IARC Working Group on the evaluation of carcinogenic risk to humans. International Agency for Research on Cancer: Lyon; 2012.

    Google Scholar 

  6. Cubie HA. Diseases associated with human papillomavirus infection. Virology. 2013;445(1–2):21–34.

    Article  CAS  PubMed  Google Scholar 

  7. Zheng Z-M, Baker CC. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci J Virtual Libr. 2006;11:2286–302.

    Article  CAS  Google Scholar 

  8. Stanley M. Pathology and epidemiology of HPV infection in females. Gynecol Oncol. 2010;117(2 Suppl):5–10.

    Article  Google Scholar 

  9. Woodman CBJ, Collins SI, Young LS. The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer. 2007;7(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  10. Herfs M, Yamamoto Y, Laury A, Wang X, Nucci MR, McLaughlin-Drubin ME, et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc Natl Acad Sci. 2012;109(26):10516–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol. 2014;4:24–31.

    Article  CAS  PubMed  Google Scholar 

  12. Venuti A, Paolini F, Nasir L, Corteggio A, Roperto S, Campo MS, et al. Papillomavirus E5: the smallest oncoprotein with many functions. Mol Cancer. 2011;10:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wentzensen N, Vinokurova S, von Knebel Doeberitz M. Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. Cancer Res. 2004;64(11):3878–84.

    Article  CAS  PubMed  Google Scholar 

  14. Vietri M, Bianchi M, Ludlow JW, Mittnacht S, Villa-Moruzzi E. Direct interaction between the catalytic subunit of Protein Phosphatase 1 and pRb. Cancer Cell Int. 2006;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Longworth MS, Laimins LA. Pathogenesis of human papillomaviruses in differentiating epithelia. Microbiol Mol Biol Rev. 2004;68(2):362–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hebnes JB, Olesen TB, Duun-Henriksen AK, Munk C, Norrild B, Kjaer SK. Prevalence of genital human papillomavirus among men in Europe: systematic review and meta-analysis. J Sex Med. 2014;11(11):2630–44.

    Article  PubMed  Google Scholar 

  17. Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M, Franceschi S. Global burden of human papillomavirus and related diseases. Vaccine. 2012;30(Suppl 5):F12–23.

    Article  PubMed  Google Scholar 

  18. Veldhuijzen NJ, Berkhof J, Gillio-Tos A, De Marco L, Carozzi F, Del Mistro A, Snijders PJ, Meijer CJ, Ronco G. The age distribution of type-specific high-risk human papillomavirus incidence in two population-based screening trials. Cancer Epidemiol Biomark Prev. 2015;24(1):111–8.

    Article  Google Scholar 

  19. Koskimaa HM, Paaso AE, Welters MJ, Grénman SE, Syrjänen KJ, van der Burg SH, Syrjänen SM. Human papillomavirus 16 E2-, E6- and E7-specific T-cell responses in children and their mothers who developed incident cervical intraepithelial neoplasia during a 14-year follow-up of the Finnish Family HPV cohort. J Transl Med. 2014;12:44.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cuschieri K, Geraets DT, Moore C, Quint W, Duvall E, Arbyn M. Clinical and analytical performance of the onclarity HPV assay using the VALGENT framework. J Clin Microbiol. 2015;53(10):3272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veldhuijzen NJ, Snijders PJ, Reiss P, Meijer CJ, van de Wijgert JH. Factors affecting transmission of mucosal human papillomavirus. Lancet Infect Dis. 2010;10(12):862–74. Erratum in: Lancet Infect Dis. 2015;15(10):1130.

    Google Scholar 

  22. Jaisamrarn U, Castellsagué X, Garland SM, Naud P, Palmroth J, Del Rosario-Raymundo MR, Wheeler CM, Salmerón J, Chow SN, Apter D, Teixeira JC, Skinner SR, Hedrick J, Szarewski A, Romanowski B, Aoki FY, Schwarz TF, Poppe WA, Bosch FX, de Carvalho NS, Germar MJ, Peters K, Paavonen J, Bozonnat MC, Descamps D, Struyf F, Dubin GO, Rosillon D, Baril L; HPV PATRICIA Study Group. Natural history of progression of HPV infection to cervical lesion or clearance: analysis of the control arm of the large, randomised PATRICIA study. PLoS One. 2013;8(11):e79260.

    Google Scholar 

  23. Skinner SR, Wheeler CM, Romanowski B, Castellsagué X, Lazcano-Ponce E, Del Rosario-Raymundo MR, Vallejos C, Minkina G, Da Silva DP, McNeil S, Prilepskaya V, Gogotadze I, Money D, Garland SM, Romanenko V, Harper DM, Levin MJ, Chatterjee A, Geeraerts B, Struyf F, Dubin G, Bozonnat MC, Rosillon D, Baril L; VIVIANE study group. Progression of HPV infection to detectable cervical lesions or clearance in adult women: analysis of the control arm of the VIVIANE study. Int J Cancer. 2016;138:2428–38.

    Google Scholar 

  24. Arbyn M, Tommasino M, Depuydt C, Dillner J. Are 20 human papillomavirus types causing cervical cancer? J Pathol. 2014;234(4):431–5.

    Article  CAS  PubMed  Google Scholar 

  25. Hammer A, Rositch A, Qeadan F, Gravitt PE, Blaakaer J. Age-specific prevalence of HPV16/18 genotypes in cervical cancer: a systematic review and meta-analysis. Int J Cancer. 2015

    Google Scholar 

  26. Molijn A, Jenkins D, Chen W, Zhang X, Pirog E, Enqi W, Liu B, Schmidt J, Cui J, Qiao Y, Quint W, Chinese HPV Typing Group. The complex relationship between human papillomavirus and cervical adenocarcinoma. Int J Cancer. 2016;138(2):409–16.

    Article  CAS  PubMed  Google Scholar 

  27. Clifford GM, Gallus S, Herrero R, Muñoz N, Snijders PJ, Vaccarella S, Anh PT, Ferreccio C, Hieu NT, Matos E, Molano M, Rajkumar R, Ronco G, de Sanjosé S, Shin HR, Sukvirach S, Thomas JO, Tunsakul S, Meijer CJ, Franceschi S, IARC HPV Prevalence Surveys Study Group. Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet. 2005;366(9490):991–8.

    Article  CAS  PubMed  Google Scholar 

  28. Daud II, Scott ME, Ma Y, Shiboski S, Farhat S, Moscicki A-B. Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer. 2011;128(4):879–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scott ME, Ma Y, Farhat S, Moscicki A-B. Expression of nucleic acid-sensing Toll-like receptors predicts HPV16 clearance associated with an E6-directed cell-mediated response. Int J Cancer. 2015;136(10):2402–8.

    Article  CAS  PubMed  Google Scholar 

  30. Roszak A, Lianeri M, Sowińska A, Jagodziński PP. Involvement of toll-like receptor 9 polymorphism in cervical cancer development. Mol Biol Rep. 2012;39(8):8425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scott M, Stites DP, Moscicki A-B. Th1 cytokine patterns in cervical human papillomavirus infection. Clin Diagn Lab Immunol. 1999;6(5):751–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Paradkar PH, Joshi JV, Mertia PN, Agashe SV, Vaidya RA. Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev APJCP. 2014;15(9):3851–64.

    Article  PubMed  Google Scholar 

  33. Moerman-Herzog A, Nakagawa M. Early defensive mechanisms against human papillomavirus infection. Clin Vaccine Immunol. 2015;22(8):850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hasan UA, Bates E, Takeshita F, Biliato A, Accardi R, Bouvard V, et al. TLR9 expression and function is abolished by the cervical cancer-associated human papillomavirus type 16. J Immunol Baltim Md 1950. 2007;178(5):3186–97.

    CAS  Google Scholar 

  35. Kleine-Lowinski K, Rheinwald JG, Fichorova RN, Anderson DJ, Basile J, Münger K, et al. Selective suppression of monocyte chemoattractant protein-1 expression by human papillomavirus E6 and E7 oncoproteins in human cervical epithelial and epidermal cells. Int J Cancer. 2003;107(3):407–15.

    Article  CAS  PubMed  Google Scholar 

  36. Stanley MA. Epithelial cell responses to infection with human papillomavirus. Clin Microbiol Rev. 2012;25(2):215–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fausch SC, Da Silva DM, Rudolf MP, Kast WM. Human papillomavirus virus-like particles do not activate Langerhans cells: a possible immune escape mechanism used by human papillomaviruses. J Immunol Baltim Md 1950. 2002;169(6):3242–9.

    CAS  Google Scholar 

  38. Hubert P, Caberg J-H, Gilles C, Bousarghin L, Franzen-Detrooz E, Boniver J, et al. E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J Pathol. 2005;206(3):346–55.

    Article  CAS  PubMed  Google Scholar 

  39. Mota FF, Rayment NB, Kanan JH, Singer A, Chain BM. Differential regulation of HLA-DQ expression by keratinocytes and Langerhans cells in normal and premalignant cervical epithelium. Tissue Antigens. 1998;52(3):286–93.

    Article  CAS  PubMed  Google Scholar 

  40. Campo MS, Graham SV, Cortese MS, Ashrafi GH, Araibi EH, Dornan ES, et al. HPV-16 E5 down-regulates expression of surface HLA class I and reduces recognition by CD8 T cells. Virology. 2010;407(1):137–42.

    Article  CAS  PubMed  Google Scholar 

  41. Alcocer-González JM, Berumen J, Taméz-Guerra R, Bermúdez-Morales V, Peralta-Zaragoza O, Hernández-Pando R, et al. In vivo expression of immunosuppressive cytokines in human papillomavirus-transformed cervical cancer cells. Viral Immunol. 2006;19(3):481–91.

    Article  PubMed  Google Scholar 

  42. Garcia-Iglesias T, Del Toro-Arreola A, Albarran-Somoza B, Del Toro-Arreola S, Sanchez-Hernandez PE, Ramirez-Dueñas MG, et al. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions. BMC Cancer. 2009;9:186.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Duerr A, Kieke B, Warren D, Shah K, Burk R, Peipert JF, et al. Human papillomavirus-associated cervical cytologic abnormalities among women with or at risk of infection with human immunodeficiency virus. Am J Obstet Gynecol. 2001;184(4):584–90.

    Article  CAS  PubMed  Google Scholar 

  44. Stanley M. HPV – immune response to infection and vaccination. Infect Agent Cancer. 2010;5:19.

    Google Scholar 

  45. Skinner SR, Apter D, De Carvalho N, Harper DM, Konno R, Paavonen J, Romanowski B, Roteli-Martins C, Burlet N, Mihalyi A, Struyf F. Human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine for the prevention of cervical cancer and HPV-related diseases. Expert Rev Vaccines. 2016;15(3):367–87.

    CAS  PubMed  Google Scholar 

  46. Basu P, Bhatla N, Ngoma T, Sankaranarayanan R. Less than 3 doses of the HPV vaccine – review of efficacy against virological and disease end points. Hum Vaccin Immunother. 2016;12:1394–402.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brotherton JM, Ogilvie GS. Current status of human papillomavirus vaccination. Curr Opin Oncol. 2015;27(5):399–404.

    Article  CAS  PubMed  Google Scholar 

  48. Fairley CK, Hocking JS, Gurrin LC, Chen MY, Donovan B, Bradshaw CS. Rapid decline in presentations of genital warts after the implementation of a national quadrivalent human papillomavirus vaccination programme for young women. Sex Transm Infect. 2009;85(7):499–502.

    Article  CAS  PubMed  Google Scholar 

  49. Beavis AL, Levinson KL. Preventing cervical cancer in the United States: barriers and resolutions for HPV vaccination. Front Oncol. 2016;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic cancer vaccines. J Clin Invest. 2015;125(9):3401–12.

    Article  PubMed  PubMed Central  Google Scholar 

  51. McKee SJ, Bergot AS, Leggatt GR. Recent progress in vaccination against human papillomavirus-mediated cervical cancer. Rev Med Virol. 2015;25(Suppl 1):54–71.

    Article  CAS  PubMed  Google Scholar 

  52. Drolet M, Bénard É, Boily MC, Ali H, Baandrup L, Bauer H, Beddows S, Brisson J, Brotherton JM, Cummings T, Donovan B, Fairley CK, Flagg EW, Johnson AM, Kahn JA, Kavanagh K, Kjaer SK, Kliewer EV, Lemieux-Mellouki P, Markowitz L, Mboup A, Mesher D, Niccolai L, Oliphant J, Pollock KG, Soldan K, Sonnenberg P, Tabrizi SN, Tanton C, Brisson M. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis. 2015;15(5):565–80.

    Google Scholar 

  53. Pollock KG, Kavanagh K, Potts A, Love J, Cuschieri K, Cubie H, Robertson C, Cruickshank M, Palmer TJ, Nicoll S, Donaghy M. Reduction of low- and high-grade cervical abnormalities associated with high uptake of the HPV bivalent vaccine in Scotland. Br J Cancer. 2014;111(9):1824–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baldur-Felskov B, Dehlendorff C, Munk C, Kjaer SK. Early impact of human papillomavirus vaccination on cervical neoplasia – nationwide follow-up of young Danish women. J Natl Cancer Inst. 2014;106(3):djt460.

    Article  PubMed  Google Scholar 

  55. Mesher D, Cuschieri K, Hibbitts S, Jamison J, Sargent A, Pollock KG, Powell N, Wilson R, McCall F, Fiander A, Soldan K. Type-specific HPV prevalence in invasive cervical cancer in the UK prior to national HPV immunisation programme: baseline for monitoring the effects of immunisation. J Clin Pathol. 2015;68(2):135–40.

    Article  PubMed  Google Scholar 

  56. Arbyn M, Ronco G, Anttila A, Meijer CJ, Poljak M, Ogilvie G, Koliopoulos G, Naucler P, Sankaranarayanan R, Peto J. Evidence regarding human papillomavirus testing in secondary prevention of cervical cancer. Vaccine. 2012;30 Suppl 5:F88–99. Review. Erratum in: Vaccine. 2013;31(52):6266.

    Google Scholar 

  57. Cubie HA, Cuschieri K. Understanding HPV tests and their appropriate applications. Cytopathology. 2013;24(5):289–308.

    CAS  PubMed  Google Scholar 

  58. Poljak M, Kocjan BJ, Oštrbenk A, Seme K. Commercially available molecular tests for human papillomaviruses (HPV): 2015 update. J Clin Virol. 2016;76(Suppl 1):S3–S13.

    Google Scholar 

  59. Meijer CJ, Berkhof J, Castle PE, Hesselink AT, Franco EL, Ronco G, Arbyn M, Bosch FX, Cuzick J, Dillner J, Heideman DA, Snijders PJ. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer. 2009;124(3):516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, Kitchener H, Segnan N, Gilham C, Giorgi-Rossi P, Berkhof J, Peto J, Meijer CJ; International HPV screening working group. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524–32. Epub 2013 Nov 3. Erratum in: Lancet. 2015;386(10002):1446.

    Google Scholar 

  61. Reid JL, Wright Jr TC, Stoler MH, Cuzick J, Castle PE, Dockter J, Getman D, Giachetti C. Human papillomavirus oncogenic mRNA testing for cervical cancer screening: baseline and longitudinal results from the CLEAR study. Am J Clin Pathol. 2015;144(3):473–83.

    Article  CAS  PubMed  Google Scholar 

  62. Depuydt CE, Jonckheere J, Berth M, Salembier GM, Vereecken AJ, Bogers JJ. Serial type-specific human papillomavirus (HPV) load measurement allows differentiation between regressing cervical lesions and serial virion productive transient infections. Cancer Med. 2015;4(8):1294–302.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bergeron C, Ronco G, Reuschenbach M, Wentzensen N, Arbyn M, Stoler M, von Knebel Doeberitz M. The clinical impact of using p16(INK4a) immunochemistry in cervical histopathology and cytology: an update of recent developments. Int J Cancer. 2015;136(12):2741–51.

    Article  CAS  PubMed  Google Scholar 

  64. Lorincz AT. Cancer diagnostic classifiers based on quantitative DNA methylation. Expert Rev Mol Diagn. 2014;14(3):293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arbyn M, Verdoodt F, Snijders PJ, Verhoef VM, Suonio E, Dillner L, Minozzi S, Bellisario C, Banzi R, Zhao FH, Hillemanns P, Anttila A. Accuracy of human papillomavirus testing on self-collected versus clinician-collected samples: a meta-analysis. Lancet Oncol. 2014;15(2):172–83.

    Article  PubMed  Google Scholar 

  66. Vorsters A, Van den Bergh J, Micalessi I, Biesmans S, Bogers J, Hens A, De Coster I, Ieven M, Van Damme P. Optimization of HPV DNA detection in urine by improving collection, storage, and extraction. Eur J Clin Microbiol Infect Dis. 2014;33(11):2005–14.

    Google Scholar 

  67. Franco EL, Mahmud SM, Tota J, Ferenczy A, Coutlée F. The expected impact of HPV vaccination on the accuracy of cervical cancer screening: the need for a paradigm change. Arch Med Res. 2009;40(6):478–85.

    Article  PubMed  Google Scholar 

  68. Palmer TJ, McFadden M, Pollock KG, Kavanagh K, Cuschieri K, Cruickshank Cotton S, Nicoll S, Robertson C. HPV immunisation and cervical screening-confirmation of changed performance of cytology as a screening test in immunised women: a retrospective population-based cohort study. Br J Cancer. 2016;114(5):582–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Cuschieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cuschieri, K., Bhatia, R. (2017). Human Papillomaviruses (HPVs). In: Herrington, C. (eds) Pathology of the Cervix. Essentials of Diagnostic Gynecological Pathology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-51257-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51257-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51255-6

  • Online ISBN: 978-3-319-51257-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics