Skip to main content

The Venous Connection: The Role of Veins in Neurodegenerative Disease

  • Chapter
  • First Online:
Inflammatory Disorders of the Nervous System

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The cerebral venous drainage system has often been viewed simply as a series of collecting vessels passively channelling blood from the brain back to the heart. However, recent studies suggest that this system may be far from passive and that it plays an important role in regulating intracranial pressure and the stiffness of the brain parenchyma, as well as influencing the dynamics of the cerebrospinal fluid in the cranium. Anomalies of the cervical veins have been reportedly linked with several neurologic conditions, including multiple sclerosis, and this has led to renewed interest in the role of the cerebral venous system. In this review we investigate this issue and explore the connection between veins and neurologic disease, highlighting the biomechanical links between cerebral venous drainage and the intracranial fluidic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stoquart-Elsankari S et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab. 2009;29(6):1208–15.

    Article  PubMed  Google Scholar 

  2. Hatt A et al. MR elastography can be used to measure brain stiffness changes as a result of altered cranial venous drainage during jugular compression. AJNR Am J Neuroradiol. 2015;36(10):1971–7.

    Article  CAS  PubMed  Google Scholar 

  3. Beggs CB et al. Aqueductal cerebrospinal fluid pulsatility in healthy individuals is affected by impaired cerebral venous outflow. J Magn Reson Imaging. 2014;40(5):1215–22.

    Article  PubMed  Google Scholar 

  4. Zamboni P et al. Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis. J Neurol Neurosurg Psychiatry. 2009;80(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  5. Zamboni P et al. Assessment of cerebral venous return by a novel plethysmography method. J Vasc Surg. 2012;56(3):677–85. e1

    Article  PubMed  Google Scholar 

  6. Zivadinov R et al. Prevalence, sensitivity, and specificity of chronic cerebrospinal venous insufficiency in MS. Neurology. 2011;77(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  7. Liu M, et al. Patterns of chronic venous insufficiency in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with Parkinson’s disease. J Vasc Surg. 2015;61(6):1511–20.e1

    Google Scholar 

  8. Filipo R et al. Chronic cerebrospinal venous insufficiency in patients with Meniere’s disease. Eur Arch Otorhinolaryngol. 2015;272(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  9. Di Berardino F et al. Chronic cerebrospinal venous insufficiency in Meniere disease. Phlebology. 2015;30(4):274–9.

    Article  PubMed  Google Scholar 

  10. Chung CP et al. Jugular venous reflux and white matter abnormalities in Alzheimer’s disease: a pilot study. J Alzheimers Dis. 2014;39(3):601–9.

    PubMed  Google Scholar 

  11. Beggs C et al. Jugular venous reflux and brain parenchyma volumes in elderly patients with mild cognitive impairment and Alzheimer’s disease. BMC Neurol. 2013;13:157.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dawson JW. The histology of disseminated sclerosis. Trans Roy Soc Edinb. 1916;50:517.

    Article  Google Scholar 

  13. Putnam TJ. Evidences of vascular occlusion in multiple sclerosis and encephalomyelitis. Arch Neurol Psychiatry. 1937;6:1298–321.

    Article  Google Scholar 

  14. Putnam TJ, Adler A. Vascular architecture of the lesions of multiple sclerosis. Arch Neurol Psychiatry. 1937;38:1–5.

    Article  Google Scholar 

  15. Adams CW. Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1988;51(2):260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schelling F. Damaging venous reflux into the skull or spine: relevance to multiple sclerosis. Med Hypotheses. 1986;21(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  17. Talbert DG. Raised venous pressure as a factor in multiple sclerosis. Med Hypotheses. 2008;70(6):1112–7.

    Article  PubMed  Google Scholar 

  18. Adams CW et al. Periventricular lesions in multiple sclerosis: their perivenous origin and relationship to granular ependymitis. Neuropathol Appl Neurobiol. 1987;13(2):141–52.

    Article  CAS  PubMed  Google Scholar 

  19. Fog T. On the vessel-plaque relations in the brain in multiple sclerosis. Acta Neurol Scand Suppl. 1963;39(4):SUPPL4:258–62.

    Google Scholar 

  20. Tan IL et al. MR venography of multiple sclerosis. AJNR Am J Neuroradiol. 2000;21(6):1039–42.

    CAS  PubMed  Google Scholar 

  21. Kidd D et al. Cortical lesions in multiple sclerosis. Brain. 1999;122(Pt 1):17–26.

    Article  PubMed  Google Scholar 

  22. Kermode AG et al. Breakdown of the blood-brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain. 1990;113(Pt 5):1477–89.

    Article  PubMed  Google Scholar 

  23. Tallantyre EC et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology. 2011;76(6):534–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duvernoy HM, Delon S, Vannson JL. Cortical blood vessels of the human brain. Brain Res Bull. 1981;7(5):519–79.

    Article  CAS  PubMed  Google Scholar 

  25. Gilmore CP et al. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry. 2009;80(2):182–7.

    Article  CAS  PubMed  Google Scholar 

  26. Young NP et al. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain. 2010;133(Pt 2):333–48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pitt D et al. Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch Neurol. 2010;67(7):812–8.

    Article  PubMed  Google Scholar 

  28. Holman DW, Klein RS, Ransohoff RM. The blood-brain barrier, chemokines and multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):220–30.

    Article  CAS  PubMed  Google Scholar 

  29. Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. Arteries and veins. J Cell Biol. 1976;68(3):705–23.

    Article  CAS  PubMed  Google Scholar 

  30. Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975;67(3):863–85.

    Article  CAS  PubMed  Google Scholar 

  31. Nagy Z, Peters H, Huttner I. Fracture faces of cell junctions in cerebral endothelium during normal and hyperosmotic conditions. Lab Invest. 1984;50(3):313–22.

    CAS  PubMed  Google Scholar 

  32. McCandless EE et al. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am J Pathol. 2008;172(3):799–808.

    Article  PubMed  PubMed Central  Google Scholar 

  33. McCandless EE et al. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 2006;177(11):8053–64.

    Article  CAS  PubMed  Google Scholar 

  34. Goldsmith HL, Spain S. Margination of leukocytes in blood flow through small tubes. Microvasc Res. 1984;27(2):204–22.

    Article  CAS  PubMed  Google Scholar 

  35. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovasc Res. 1996;32(4):733–42.

    Article  CAS  PubMed  Google Scholar 

  36. Chung CP, Hu HH. Pathogenesis of leukoaraiosis: role of jugular venous reflux. Med Hypotheses. 2010;75(1):85–90.

    Article  PubMed  Google Scholar 

  37. Chung CP et al. Jugular venous hemodynamic changes with aging. Ultrasound Med Biol. 2010;36(11):1776–82.

    Article  PubMed  Google Scholar 

  38. Chung CP et al. More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol. 2011;69(3):553–9.

    Article  PubMed  Google Scholar 

  39. Moody DM et al. Periventricular venous collagenosis: association with leukoaraiosis. Radiology. 1995;194(2):469–76.

    Article  CAS  PubMed  Google Scholar 

  40. Brown WR et al. Microvascular changes in the white matter in dementia. J Neurol Sci. 2009;283(1–2):28–31.

    Google Scholar 

  41. Moody DM et al. Cerebral microvascular alterations in aging, leukoaraiosis, and Alzheimer’s disease. Ann N Y Acad Sci. 1997;826:103–16.

    Article  CAS  PubMed  Google Scholar 

  42. Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol. 2011;37(1):56–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke. 1997;28(3):652–9.

    Article  CAS  PubMed  Google Scholar 

  44. Inzitari D et al. Histopathological correlates of leuko-araiosis in patients with ischemic stroke. Eur Neurol. 1989;29(Suppl 2):23–6.

    PubMed  Google Scholar 

  45. Inzitari D et al. Leukoaraiosis, intracerebral hemorrhage, and arterial hypertension. Stroke. 1990;21(10):1419–23.

    Article  CAS  PubMed  Google Scholar 

  46. Wiszniewska M et al. What is the significance of leukoaraiosis in patients with acute ischemic stroke? Arch Neurol. 2000;57(7):967–73.

    Article  CAS  PubMed  Google Scholar 

  47. Inzitari D et al. Vascular risk factors and leuko-araiosis. Arch Neurol. 1987;44(1):42–7.

    Article  CAS  PubMed  Google Scholar 

  48. Furuta A et al. Medullary arteries in aging and dementia. Stroke. 1991;22(4):442–6.

    Article  CAS  PubMed  Google Scholar 

  49. Fazekas F et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):1683–9.

    Article  CAS  PubMed  Google Scholar 

  50. van Swieten JC et al. Periventricular lesions in the white matter on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain. 1991;114(Pt 2):761–74.

    Article  PubMed  Google Scholar 

  51. Thore CR et al. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol. 2007;66(5):337–45.

    Article  PubMed  Google Scholar 

  52. Brown WR et al. Venous collagenosis and arteriolar tortuosity in leukoaraiosis. J Neurol Sci. 2002;203-204:159–63.

    Article  PubMed  Google Scholar 

  53. Moody DM, Santamore WP, Bell MA. Does tortuosity in cerebral arterioles impair down-autoregulation in hypertensives and elderly normotensives? A hypothesis and computer model. Clin Neurosurg. 1991;37:372–87.

    CAS  PubMed  Google Scholar 

  54. Kawamura J et al. Leukoaraiosis correlates with cerebral hypoperfusion in vascular dementia. Stroke. 1991;22(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  55. O’Sullivan M et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology. 2002;59(3):321–6.

    Article  PubMed  Google Scholar 

  56. Markus HS et al. Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. J Neurol Neurosurg Psychiatry. 2000;69(1):48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Law M et al. Microvascular abnormality in relapsing-remitting multiple sclerosis: perfusion MR imaging findings in normal-appearing white matter. Radiology. 2004;231(3):645–52.

    Article  PubMed  Google Scholar 

  58. Ge Y et al. Dynamic susceptibility contrast perfusion MR imaging of multiple sclerosis lesions: characterizing hemodynamic impairment and inflammatory activity. AJNR Am J Neuroradiol. 2005;26(6):1539–47.

    PubMed  Google Scholar 

  59. Varga AW et al. White matter hemodynamic abnormalities precede sub-cortical gray matter changes in multiple sclerosis. J Neurol Sci. 2009;282(1–2):28–33.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Adhya S et al. Pattern of hemodynamic impairment in multiple sclerosis: dynamic susceptibility contrast perfusion MR imaging at 3.0 T. Neuroimage. 2006;33(4):1029–35.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wakefield AJ et al. Immunohistochemical study of vascular injury in acute multiple sclerosis. J Clin Pathol. 1994;47(2):129–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aboul-Enein F, Lassmann H. Mitochondrial damage and histotoxic hypoxia: a pathway of tissue injury in inflammatory brain disease? Acta Neuropathol. 2005;109(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  63. Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol. 2008;65(6):812–6.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Werring DJ et al. The pathogenesis of lesions and normal-appearing white matter changes in multiple sclerosis: a serial diffusion MRI study. Brain. 2000;123(Pt 8):1667–76.

    Article  PubMed  Google Scholar 

  65. Wuerfel J et al. Changes in cerebral perfusion precede plaque formation in multiple sclerosis: a longitudinal perfusion MRI study. Brain. 2004;127(Pt 1):111–9.

    Article  PubMed  Google Scholar 

  66. Lochhead JJ et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab. 2010;30(9):1625–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Witt KA et al. Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol. 2003;285(6):H2820–31.

    Article  CAS  PubMed  Google Scholar 

  68. Wittek A et al. Subject-specific non-linear biomechanical model of needle insertion into brain. Comput Methods Biomech Biomed Engin. 2008;11(2):135–46.

    Article  CAS  PubMed  Google Scholar 

  69. Egnor M, Rosiello A, Zheng L. A model of intracranial pulsations. Pediatr Neurosurg. 2001;35(6):284–98.

    Article  CAS  PubMed  Google Scholar 

  70. Bateman GA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology. 2002;44(9):740–8.

    Article  CAS  PubMed  Google Scholar 

  71. Wagshul ME, Eide PK, Madsen JR. The pulsating brain: a review of experimental and clinical studies of intracranial pulsatility. Fluids Barriers CNS. 2011;8(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Egnor M et al. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg. 2002;36(6):281–303.

    Article  PubMed  Google Scholar 

  73. Beggs CB. Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis. BMC Med. 2013;11:142.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Beggs CB. Cerebral venous outflow and cerebrospinal fluid dynamics. Veins and Lymphatics. 2014;3:1867.

    Article  Google Scholar 

  75. Bateman GA. Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2000;21(9):1574–85.

    CAS  PubMed  Google Scholar 

  76. Bateman GA. Vascular hydraulics associated with idiopathic and secondary intracranial hypertension. AJNR Am J Neuroradiol. 2002;23(7):1180–6.

    PubMed  Google Scholar 

  77. Bilston LE. In: Miller K, editor. Brain tissue mechanical properties, in Biomechanics of the brain. New York: Springer; 2011. p. 69–89.

    Chapter  Google Scholar 

  78. Miller K, Chinzei K. Constitutive modelling of brain tissue: experiment and theory. J Biomech. 1997;30(11–12):1115–21.

    Article  CAS  PubMed  Google Scholar 

  79. Beggs CB et al. Blood storage within the intracranial space and its impact on cerebrospinal fluid dynamics. Veins and Lymphatics. 2015;4(S1):11–2.

    Google Scholar 

  80. Beggs CB et al. Factors influencing aqueductal cerebrospinal fluid motion in healthy individuals. Veins and Lymphatics. 2015;4(S1):5–6.

    Google Scholar 

  81. Greitz D. Cerebrospinal fluid circulation and associated intracranial dynamics. A radiologic investigation using MR imaging and radionuclide cisternography. Acta Radiol Suppl. 1993;386:1–23.

    CAS  PubMed  Google Scholar 

  82. Nakagawa Y, Tsuru M, Yada K. Site and mechanism for compression of the venous system during experimental intracranial hypertension. J Neurosurg. 1974;41(4):427–34.

    Article  CAS  PubMed  Google Scholar 

  83. Kitano M, Oldendorf WH, Cassen B. The elasticity of the cranial blood pool. J Nucl Med. 1964;5:613–25.

    CAS  PubMed  Google Scholar 

  84. Hulme A, Cooper R. Intracranial Pressure III. In: The effect of head position and jugular vein compression on ICP. A clinical study. Berlin: Springer; 1976. p. 259–63.

    Google Scholar 

  85. Iwabuchi T et al. Dural sinus pressure: various aspects in human brain surgery in children and adults. Am J Physiol. 1986;250(3 Pt 2):H389–96.

    CAS  PubMed  Google Scholar 

  86. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  87. Frydrychowski AF, Winklewski PJ, Guminski W. Influence of acute jugular vein compression on the cerebral blood flow velocity, pial artery pulsation and width of subarachnoid space in humans. PLoS One. 2012;7(10):e48245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Rashid S et al. Neocortical capillary flow pulsatility is not elevated in experimental communicating hydrocephalus. J Cereb Blood Flow Metab. 2012;32(2):318–29.

    Article  PubMed  Google Scholar 

  89. Bateman GA. Pulse wave encephalopathy: a spectrum hypothesis incorporating Alzheimer’s disease, vascular dementia and normal pressure hydrocephalus. Med Hypotheses. 2004;62(2):182–7.

    Article  PubMed  Google Scholar 

  90. Tarumi T et al. Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab. 2014;34(6):971–8.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Mitchell GF et al. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age Gene/Environment Susceptibility–Reykjavik study. Brain. 2011;134(Pt 11):3398–407.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jolly TA et al. Early detection of microstructural white matter changes associated with arterial pulsatility. Front Hum Neurosci. 2013;7:782.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Wahlin A et al. Intracranial pulsatility is associated with regional brain volume in elderly individuals. Neurobiol Aging. 2014;35(2):365–72.

    Article  PubMed  Google Scholar 

  94. Drayer BP. Imaging of the aging brain Part I. Normal findings. Radiology. 1988;166(3):785–96.

    Article  CAS  PubMed  Google Scholar 

  95. Safar ME, Levy BI, Struijker-Boudier H. Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation. 2003;107(22):2864–9.

    Article  PubMed  Google Scholar 

  96. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension. 1989;13(6 Pt 2):968–72.

    Article  CAS  PubMed  Google Scholar 

  97. Magnano C et al. Cine cerebrospinal fluid imaging in multiple sclerosis. J Magn Reson Imaging. 2012;36(4):825–34.

    Article  PubMed  Google Scholar 

  98. Gorucu Y et al. Cerebrospinal fluid flow dynamics in patients with multiple sclerosis: a phase contrast magnetic resonance study. Funct Neurol. 2011;26(4):215–22.

    CAS  PubMed  Google Scholar 

  99. Zamboni P et al. The severity of chronic cerebrospinal venous insufficiency in patients with multiple sclerosis is related to altered cerebrospinal fluid dynamics. Funct Neurol. 2009;24(3):133–8.

    CAS  PubMed  Google Scholar 

  100. Kim DS et al. Quantitative assessment of cerebrospinal fluid hydrodynamics using a phase-contrast cine MR image in hydrocephalus. Childs Nerv Syst. 1999;15(9):461–7.

    Article  CAS  PubMed  Google Scholar 

  101. El Sankari S et al. Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus. Fluids Barriers CNS. 2011;8(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Luetmer PH et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery. 2002;50(3):534–43. discussion 543–4

    PubMed  Google Scholar 

  103. Schroth G, Klose U. Cerebrospinal fluid flow. III. Pathological cerebrospinal fluid pulsations. Neuroradiology. 1992;35(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  104. Gideon P et al. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology. 1994;36(3):210–5.

    Article  CAS  PubMed  Google Scholar 

  105. Bradley Jr WG et al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology. 1996;198(2):523–9.

    Article  PubMed  Google Scholar 

  106. Beggs CB et al. Dirty-appearing white matter in the brain is associated with altered cerebrospinal fluid pulsatility and hypertension in individuals without neurologic disease. J Neuroimaging. 2016;26(1):136–43.

    Article  PubMed  Google Scholar 

  107. Tullberg M et al. White matter changes in normal pressure hydrocephalus and Binswanger disease: specificity, predictive value and correlations to axonal degeneration and demyelination. Acta Neurol Scand. 2002;105(6):417–26.

    Article  CAS  PubMed  Google Scholar 

  108. Czosnyka Z et al. Pulse amplitude of intracranial pressure waveform in hydrocephalus. Acta Neurochir Suppl. 2008;102:137–40.

    Article  CAS  PubMed  Google Scholar 

  109. Thompson EJ, Zeman A. Fluids of the brain and the pathogenesis of MS. Neurochem Res. 1992;17(9):901–5.

    Article  CAS  PubMed  Google Scholar 

  110. Liu M et al. Patterns of chronic venous insufficiency in the dural sinuses and extracranial draining veins and their relationship with white matter hyperintensities for patients with Parkinson’s disease. J Vasc Surg. 2015;61(6):1511–20. e1

    Article  PubMed  Google Scholar 

  111. Bradley WG. Normal pressure hydrocephalus: new concepts on etiology and diagnosis. AJNR Am J Neuroradiol. 2000;21(9):1586–90.

    CAS  PubMed  Google Scholar 

  112. Tullberg M et al. CSF sulfatide distinguishes between normal pressure hydrocephalus and subcortical arteriosclerotic encephalopathy. J Neurol Neurosurg Psychiatry. 2000;69(1):74–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Algin O et al. MR cisternography: is it useful in the diagnosis of normal-pressure hydrocephalus and the selection of "good shunt responders"? Diagn Interv Radiol. 2011;17(2):105–11.

    PubMed  Google Scholar 

  114. Tator CH et al. A radioisotopic test for communicating hydrocephalus. J Neurosurg. 1968;28(4):327–40.

    Article  CAS  PubMed  Google Scholar 

  115. Tullberg M et al. Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol. 2001;22(9):1665–73.

    CAS  PubMed  Google Scholar 

  116. Bloomfield GL et al. A proposed relationship between increased intra-abdominal, intrathoracic, and intracranial pressure. Crit Care Med. 1997;25(3):496–503.

    Article  CAS  PubMed  Google Scholar 

  117. Shen F et al. Modified Bilston nonlinear viscoelastic model for finite element head injury studies. J Biomech Eng. 2006;128(5):797–801.

    Article  CAS  PubMed  Google Scholar 

  118. Deo-Narine V et al. Direct in vivo observation of transventricular absorption in the hydrocephalic dog using magnetic resonance imaging. Invest Radiol. 1994;29(3):287–93.

    Article  CAS  PubMed  Google Scholar 

  119. Tullberg M et al. White matter diffusion is higher in Binswanger disease than in idiopathic normal pressure hydrocephalus. Acta Neurol Scand. 2009;120(4):226–34.

    Article  CAS  PubMed  Google Scholar 

  120. Momjian S et al. Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain. 2004;127(Pt 5):965–72.

    Article  PubMed  Google Scholar 

  121. Owler BK et al. Normal pressure hydrocephalus and cerebral blood flow: a PET study of baseline values. J Cereb Blood Flow Metab. 2004;24(1):17–23.

    Article  PubMed  Google Scholar 

  122. Christiansen P et al. Increased water self-diffusion in chronic plaques and in apparently normal white matter in patients with multiple sclerosis. Acta Neurol Scand. 1993;87(3):195–9.

    Article  CAS  PubMed  Google Scholar 

  123. Graff-Radford NR et al. Regional cerebral blood flow in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry. 1987;50(12):1589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ogoh S et al. Blood flow distribution during heat stress: cerebral and systemic blood flow. J Cereb Blood Flow Metab. 2013;33(12):1915–20.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zamboni P et al. Venous collateral circulation of the extracranial cerebrospinal outflow routes. Curr Neurovasc Res. 2009;6(3):204–12.

    Article  PubMed  Google Scholar 

  126. Simka M et al. Extracranial Doppler sonographic criteria of chronic cerebrospinal venous insufficiency in the patients with multiple sclerosis. Int Angiol. 2010;29(2):109–14.

    CAS  PubMed  Google Scholar 

  127. Zaniewski M et al. Neck duplex Doppler ultrasound evaluation for assessing chronic cerebrospinal venous insufficiency in multiple sclerosis patients. Phlebology. 2013;28(1):24–31.

    CAS  PubMed  Google Scholar 

  128. Haacke EM et al. Patients with multiple sclerosis with structural venous abnormalities on MR imaging exhibit an abnormal flow distribution of the internal jugular veins. J Vasc Interv Radiol. 2012;23(1):60–8. e1-3.

    Article  PubMed  Google Scholar 

  129. Yamout B et al. Extracranial venous stenosis is an unlikely cause of multiple sclerosis. Mult Scler. 2010;16(11):1341–8.

    Article  PubMed  Google Scholar 

  130. Doepp F et al. No cerebrocervical venous congestion in patients with multiple sclerosis. Ann Neurol. 2010;68(2):173–83.

    PubMed  Google Scholar 

  131. Krogias C, et al. Brain Hyperechogenicities are not Associated with Venous Insufficiency in Multiple Sclerosis: a Pilot Neurosonology Study. J Neuroimaging. 2016;26(1):150–5.

    Google Scholar 

  132. Baracchini C et al. Progressive multiple sclerosis is not associated with chronic cerebrospinal venous insufficiency. Neurology. 2011;77(9):844–50.

    Article  CAS  PubMed  Google Scholar 

  133. Mayer CA et al. The perfect crime? CCSVI not leaving a trace in MS. J Neurol Neurosurg Psychiatry. 2011;82(4):436–40.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Traboulsee AL et al. Prevalence of extracranial venous narrowing on catheter venography in people with multiple sclerosis, their siblings, and unrelated healthy controls: a blinded, case-control study. Lancet. 2014;383(9912):138–45.

    Article  PubMed  Google Scholar 

  135. Zivadinov R, Weinstock-Guttman B. Funding CCSVI research is/was a waste of valuable time, money and intellectual energy: no. Mult Scler. 2013;19(7):858–60.

    Article  PubMed  Google Scholar 

  136. Beggs C, Shepherd S, Zamboni P. Cerebral venous outflow resistance and interpretation of cervical plethysmography data with respect to the diagnosis of chronic cerebrospinal venous insufficiency. Phlebology. 2014;29(3):191–9.

    Article  CAS  PubMed  Google Scholar 

  137. Bateman GA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics? AJNR Am J Neuroradiol. 2008;29(1):198–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Beggs PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Beggs, C. (2017). The Venous Connection: The Role of Veins in Neurodegenerative Disease. In: Minagar, A., Alexander, J. (eds) Inflammatory Disorders of the Nervous System. Current Clinical Neurology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-51220-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51220-4_13

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-51218-1

  • Online ISBN: 978-3-319-51220-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics