Skip to main content

Multi-objective Optimal Reactive Power Dispatch Considering Uncertainties in the Wind Integrated Power Systems

  • Chapter
  • First Online:
Reactive Power Control in AC Power Systems

Part of the book series: Power Systems ((POWSYS))

Abstract

One of the most principle optimization problems which gained the attention of power system operators around the world is optimal power flow (OPF) . The OPF basically performs an intelligent power flow and optimizes the system operation condition by optimally determination of control variables. It also considers a specific set of operational constraints and technical limits for this aim, which guaranties both feasibility and optimality of the scheduled operation condition. Generally, this problem can be categorized into two main sub-problems, i.e. optimal reactive power dispatch (ORPD) and optimal real power dispatch, which are differ in their aims and control variables. This chapter deals with the first one, ORPD, which has significant impact on power system security. ORPD is modeled as an optimization problem with nonlinear functions and mixed continuous/discrete variables. Thus, it is a complicated optimization problem. The multi-objective ORPD (MO-ORPD) problem is studied, taking into account different operational constraints such as bus voltage limits, power flow limits of branches, limits of generators voltages, transformers tap ratios and the amount of available reactive power compensation at the weak buses. Three different objective functions are considered in the proposed MO-ORPD framework, which are minimizing total active power losses , minimizing voltage variations and minimizing voltage stability index (L-index). These conflicting objectives are optimized via ε-constraint method. In order to model the stochastic behavior of demand and wind power generation, it is necessary to modify the MO-ORPD problem, and develop a probabilistic approach to handle the uncertainties in MO-ORPD problem. Hence, a two-stage stochastic MO-ORPD (SMO-ORPD) is suggested to handle the load and wind power uncertainties in the MO-ORPD problem. In the proposed two-stage stochastic optimization model, the decision variables are classified into two categories, namely, “here and now” and “wait and see” variables. The optimal values of “here and now” variables should be known before realization of scenarios, and therefore, their values are the same for all scenarios while the optimal values of “wait and see” variables are based on the realized scenario, and hence their values are scenario dependent. Moreover, in order to examine performance of the proposed SMO-ORPD and the impact of wind power generation on the results of SMO-ORPD, deterministic ORPD (DMO-ORPD) has also been solved in two modes: DMO-ORPD without wind farms (WFs) and any uncertainty, for the sake of comparison with the available methods in recent literature, and DMO-ORPD with WFs. In this chapter the reactive power compensation devices are modeled as discrete/continuous control variables. DMO-ORPD and SMO-ORPD are formulated as mixed integer non-linear program (MINLP) problems, and solved by General Algebraic Modeling System (GAMS). Also, the IEEE 30-bus standard system is utilized for evaluation of the proposed MO-ORPD models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Zhao, C. Guo, Y. Cao, A Multiagent-Based Particle Swarm Optimization Approach for Optimal Reactive Power Dispatch, IEEE Transactions on Power Systems, vol. 20, pp. 1070–1078, 2005.

    Google Scholar 

  2. C. Dai, W. Chen, Y. Zhu, X. Zhang, Seeker Optimization Algorithm for Optimal Reactive Power Dispatch, IEEE Transactions on Power Systems, vol. 24, pp. 1218–1231, 2009.

    Google Scholar 

  3. A. Khorsandi, A. Alimardani, B. Vahidi, S. Hosseinian, Hybrid Shuffled Frog Leaping Algorithm and Nelder-Mead Simplex Search for Optimal Reactive Power Dispatch, IET Generation, Transmission & Distribution, vol. 5, pp. 249–256, 2011.

    Google Scholar 

  4. M. Ghasemi, S. Ghavidel, M.M. Ghanbarian, A. Habibi, A New Hybrid Algorithm for Optimal Reactive Power Dispatch Problem with Discrete and Continuous Control Variables, Applied Soft Computing vol. 22, pp. 126–40, 2014.

    Google Scholar 

  5. M. Ghasemi, M.M. Ghanbarian, S. Ghavidel, S. Rahmani, E. Mahboubi Moghaddam, Modified Teaching Learning Algorithm and Double Differential Evolution Algorithm for Optimal Reactive Power Dispatch Problem: A Comparative Study, Information Sciences, vol. 278, pp. 231–249, 2014.

    Google Scholar 

  6. M. Martinez Rojas, A. Sumper, O. Gomis Bellmunt, A. Sudria Andreu, Reactive Power Dispatch in Wind Farms Using Particle Swarm Optimization Technique and Feasible Solutions Search, Applied Energy, vol. 88, pp. 4678–4686, 2011.

    Google Scholar 

  7. R. Mallipeddi, S. Jeyadevi, P.N. Suganthan, S. Baskar, Efficient Constraint Handling for Optimal Reactive Power Dispatch Problems, Swarm and Evolutionary Computation, vol. 5, pp. 28–36, 2012.

    Google Scholar 

  8. C.M. Huang, S.J. Chen, Y.C. Huang, H.T. Yang, Comparative Study of Evolutionary Computation Methods for Active-Reactive Power Dispatch, IET Generation, Transmission & Distribution, vol. 6, pp. 636–645, 2012.

    Google Scholar 

  9. A. Rajan, T. Malakar, Optimal Reactive Power Dispatch Using Hybrid Nelder-Mead Simplex Based Firefly Algorithm, International Journal of Electrical Power & Energy Systems, vol. 66, pp. 9–24, 2015.

    Google Scholar 

  10. R.P. Singh, V. Mukherjee, S. Ghoshal, Optimal Reactive Power Dispatch by Particle Swarm Optimization with an Aging Leader and Challengers, Applied Soft Computing, vol. 29, pp. 298–309, 2015.

    Google Scholar 

  11. M.H. Sulaiman, Z. Mustaffa, M.R. Mohamed, O. Aliman, Using the Gray Wolf Optimizer for Solving Optimal Reactive Power Dispatch Problem, Applied Soft Computing, vol. 32, pp. 286–292, 2015.

    Google Scholar 

  12. D. Thukaram, G. Yesuratnam, Optimal Reactive Power Dispatch in a Large Power System with AC-DC and FACTS Controllers, Generation, Transmission & Distribution, IET, vol. 2, pp. 71–81, 2008.

    Google Scholar 

  13. A. Rabiee, M. Vanouni, M. Parniani, Optimal Reactive Power Dispatch for Improving Voltage Stability Margin Using a Local Voltage Stability Index, Energy Conversion and Management, vol. 59, pp. 66–73, 2012.

    Google Scholar 

  14. C. Dai, W. Chen, Y. Zhu, and X. Zhang, Reactive Power Dispatch Considering Voltage Stability with Seeker Optimization Algorithm, Electric Power Systems Research, vol. 79, pp. 1462–1471, 2009.

    Google Scholar 

  15. A. Ela, M. Abido, S. Spea, Differential Evolution Algorithm for Optimal Reactive Power Dispatch, Electric Power Systems Research, vol. 81, pp. 458–464, 2011.

    Google Scholar 

  16. A. Khazali, M. Kalantar, Optimal Reactive Power Dispatch Based on Harmony Search Algorithm, International Journal of Electrical Power & Energy Systems, vol. 33, pp. 684–692, 2011.

    Google Scholar 

  17. S. Duman, Y. Sonmez, U. Guvenc, N. Yorukeren, Optimal Reactive Power Dispatch Using a Gravitational Search Algorithm, IET Generation, Transmission & Distribution, vol. 6, pp. 563–576, 2012.

    Google Scholar 

  18. J.M. Ramirez, J.M. Gonzalez, T.O. Ruben, An Investigation about the Impact of the Optimal Reactive Power Dispatch Solved by DE, International Journal of Electrical Power & Energy Systems, vol. 33, pp. 236–244, 2011.

    Google Scholar 

  19. E.M. Soler, E.N. Asada, G.R. Da Costa, Penalty-Based Nonlinear Solver for Optimal Reactive Power Dispatch with Discrete Controls, IEEE Transactions on Power Systems, vol. 28, pp. 2174–2182, 2013.

    Google Scholar 

  20. M. Abido, J. Bakhashwain, Optimal VAR Dispatch Using a Multi-Objective Evolutionary Algorithm, International Journal of Electrical Power & Energy Systems, vol. 27, pp. 13–20, 2005.

    Google Scholar 

  21. L. Zhihuan, L. Yinhong, D. Xianzhong, Non-Dominated Sorting Genetic Algorithm-II for Robust Multi-Objective Optimal Reactive Power Dispatch, Generation, Transmission & Distribution, IET, vol. 4, pp. 1000–1008, 2010.

    Google Scholar 

  22. S. Jeyadevi, S. Baskar, C. Babulal, M. Willjuice Iruthayarajan, Solving Multi-Objective Optimal Reactive Power Dispatch Using Modified NSGA-II, International Journal of Electrical Power & Energy Systems, vol. 33, pp. 219–228, 2011.

    Google Scholar 

  23. A. Saraswat, A. Saini, Multi-Objective Optimal Reactive Power Dispatch Considering Voltage Stability in Power Systems Using HFMOEA, Engineering Applications of Artificial Intelligence, vol. 26, pp. 390–404, 2013.

    Google Scholar 

  24. G. Chen, L. Liu, P. Song, Y. Du, Chaotic Improved PSO-Based Multi-Objective Optimization for Minimization of Power Losses and L Index in Power Systems, Energy Conversion and Management, vol. 86, pp. 548–560, 2014.

    Google Scholar 

  25. B. Mandal, P.K. Roy, Optimal Reactive Power Dispatch Using Quasi-Oppositional Teaching Learning Based Optimization, International Journal of Electrical Power & Energy Systems, vol. 53, pp. 123–134, 2013.

    Google Scholar 

  26. A. Ghasemi, K. Valipour, A. Tohidi, Multi-Objective Optimal Reactive Power Dispatch Using a New Multi-Objective Strategy, International Journal of Electrical Power & Energy Systems, vol. 57, pp. 318–334, 2014.

    Google Scholar 

  27. B. Zhou, K. Chan, T. Yu, H. Wei, J. Tang, Strength Pareto Multi-Group Search Optimizer for Multi-Objective Optimal VAR Dispatch, IEEE Transactions on Industrial Informatics, vol. 10, pp. 1012–1022, 2014.

    Google Scholar 

  28. Z. Hu, X. Wang, G. Taylor, Stochastic Optimal Reactive Power Dispatch: Formulation and Solution Method, International Journal of Electrical Power & Energy Systems, vol. 32, pp. 615–621, 2010.

    Google Scholar 

  29. S. M. Mohseni Bonab, A. Rabiee, S. Jalilzadeh, B. Mohammadi Ivatloo, and S. Nojavan, “Probabilistic Multi Objective Optimal Reactive Power Dispatch Considering Load Uncertainties Using Monte Carlo Simulations, Journal of Operation and Automation in Power Engineering, vol. 3(1), pp. 83–93, 2015.

    Google Scholar 

  30. S. M. Mohseni Bonab, A. Rabiee, B. Mohammadi Ivatloo, Load Uncertainty Analysis in Multi Objective Optimal Reactive Power Dispatch Considering Voltage Stability, Majlesi Journal of Energy Management, vol. 4(2), pp. 23–30, 2015.

    Google Scholar 

  31. A. Brooke, D. Kendrick, A. Meeraus, GAMS Release 2.25: A User’s Guide: GAMS Development Corporation Washington, DC, 1996.

    Google Scholar 

  32. P.E. Gill, W. Murray, M.A. Saunders, SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization, SIAM Journal on Optimization, vol. 12, pp. 979–1006, 2002.

    Google Scholar 

  33. The GAMS Software Website, http://www.gams.com/dd/docs/solvers/sbb.pdf, 2013.

  34. A. Soroudi, T. Amraee, Decision Making under Uncertainty in Energy Systems: State of the Art, Renewable and Sustainable Energy Reviews, vol. 28, pp. 376–384, 2013.

    Google Scholar 

  35. A. Rabiee, A. Soroudi, B. Mohammadi Ivatloo, M. Parniani, Corrective Voltage Control Scheme Considering Demand Response and Stochastic Wind Power, IEEE Transactions on Power Systems, vol. 29, pp. 2965–2973, 2014.

    Google Scholar 

  36. A. Soroudi, B. Mohammadi Ivatloo, A. Rabiee, Energy Hub Management with Intermittent Wind Power, in Large Scale Renewable Power Generation, Springer, pp. 413–438, 2014.

    Google Scholar 

  37. A. Rabiee, A. Soroudi, Stochastic Multiperiod OPF Model of Power Systems with HVDC-Connected Intermittent Wind Power Generation, IEEE Transactions on Power Delivery, vol. 29, pp. 336–344, 2014.

    Google Scholar 

  38. A. Soroudi, A. Rabiee, A. Keane, Stochastic Real-Time Scheduling of Wind-Thermal Generation Units in an Electric Utility, IEEE System Journal, 2014.

    Google Scholar 

  39. R.D. Zimmerman, C.E. Murillo Sanchez, D. Gan, A MATLAB Power System Simulation Package, 2005.

    Google Scholar 

  40. S. Wen, H. Lan, Q. Fu, D. Yu, L. Zhang, Economic Allocation for Energy Storage System Considering Wind Power Distribution, IEEE Transactions on power Systems, vol. 30(2), pp. 644–52, 2015.

    Google Scholar 

  41. C.A. Canizares, Voltage Stability Assessment: Concepts, Practices and Tools, Power System Stability Subcommittee Special Publication IEEE/PES, thunderbox.uwaterloo. ca/~claudio/claudio.html#VSWG, 2002.

    Google Scholar 

  42. F. Jabbari, B. Mohammadi Ivatloo, Static Voltage Stability Assessment Using Probabilistic Power Flow to Determine the Critical PQ Buses, Majlesi Journal of Electrical Engineering, vol. 8, pp. 17–25, 2014.

    Google Scholar 

  43. H. Xiong, H. Cheng, H. Li, Optimal Reactive Power Flow Incorporating Static Voltage Stability Based on Multi-Objective Adaptive Immune Algorithm, Energy Conversion and Management, vol. 49, pp. 1175–1181, 2008.

    Google Scholar 

  44. R. Raghunatha, R. Ramanujam, K. Parthasarathy, D. Thukaram, Optimal Static Voltage Stability Improvement Using a Numerically Stable SLP Algorithm, for Real Time Applications, International Journal of Electrical Power & Energy Systems, vol. 21, pp. 289–297, 1999.

    Google Scholar 

  45. X. Wang, Y. Gong, C. Jiang, Regional Carbon Emission Management Based on Probabilistic Power Flow with Correlated Stochastic Variables, IEEE Transactions on Power Systems, vol. 30, pp. 1094–1103, 2014.

    Google Scholar 

  46. M. Alipour, B. Mohammadi Ivatloo, K. Zare, Stochastic Risk-Constrained Short-Term Scheduling of Industrial Cogeneration Systems in the Presence of Demand Response Programs, Applied Energy, vol. 136, pp. 393–404, 2014.

    Google Scholar 

  47. R.D. Zimmerman, C.E. Murillo Sanchez, R.J. Thomas, MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education, IEEE Transactions on Power Systems, vol. 26, pp. 12–19, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Rabiee .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 12.15.

Table 12.15 The data of VAR Compensation devices

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mohseni-Bonab, S.M., Rabiee, A., Mohammadi-Ivatloo, B. (2017). Multi-objective Optimal Reactive Power Dispatch Considering Uncertainties in the Wind Integrated Power Systems. In: Mahdavi Tabatabaei, N., Jafari Aghbolaghi, A., Bizon, N., Blaabjerg, F. (eds) Reactive Power Control in AC Power Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-51118-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51118-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51117-7

  • Online ISBN: 978-3-319-51118-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics