Skip to main content

Chaboche Material Model and Thermo-Mechanical Behaviour of Polymers with Respect to Fatigue

  • Conference paper
  • First Online:
Proceedings of the 13th International Scientific Conference (RESRB 2016)

Abstract

In this paper we want to highlight the chain of linked topics, which are necessary to cover when implementing a fatigue analysis for polymeric materials and/or fibre-reinforced plastics. Starting from experimental observation the time dependency in cyclic loading responses are emphasized by viscoelastic and viscoplastic phenomena in applied material models. Incorporating an efficient failure criteria in this framework is pointed out. Finally, a concept for a thermo-mechanical model is discussed to correlate the temperature field to the fatigue status with the Chaboche model as the core for dissipative quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nasdala L.: FEM-Formelsammlung Statik und Dynamik, Springer Vieweg, 2012.

    Google Scholar 

  2. Park, S.W.; Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series, IJournal of Solids and Structures 36 (1999), 1653–1675.

    Google Scholar 

  3. Park, S.W.; Schapery, R.A.: Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method, IJournal of Solids and Structures 36 (1999), 1677–1699.

    Google Scholar 

  4. Tuttle M.E; Brinson H.F.: Prediction of Long-Term Creep Compliance of General Composite Laminates, Experimental Mechanics, March 1986, 89–102.

    Google Scholar 

  5. Chaboche, J. L.: Time-independent constitutive theories for cyclic plasticity. Int. J.Plast. 5, 1986.

    Google Scholar 

  6. Metzger, M.; Nieweg, B.; Schweizer, C.; Seifert, T.: Lifetime prediction of cast iron materials under combined thermomechanical fatigue and high cycle fatigue loading using a mechanism-based model, IJournal of Fatigue, Volume 53, August 2013, Pages 58–66.

    Google Scholar 

  7. Kliemt, C.: Thermo-mechanical fatigue of cast aluminium alloys for engine applications under severe conditions, Dissertation 2012, Herior-Watt University.

    Google Scholar 

  8. Coleman, B. D.; Noll, W.: The Thermodynamics of Elastic Materials with Heat Conduction and Viscosity. Arch. Rat. Mech. Anal. 13[1963], pp. 167–178.

    Google Scholar 

  9. Truesdell, C.; Noll, W.; Flügge, S. (Hrsg.): Handbuch der Physik III/3. Bd. The nonlinear field theories of mechanics. Berlin, Heidelberg, New York: Springer-Verlag, 1965.

    Google Scholar 

  10. Freed, A. D.; Chaboche, J.-L.; Walker, K. P.: A viscoplastic theory with thernmdynamic considerations. Acta Mechanica, Vol. 90, pp. 155–174 (1991).

    Google Scholar 

  11. Kamlah, M.: Zur Modellierung des Verfestigungsverhaltens von Materialien mit statischer Hysterese im Rahmen der ph/inomenologischen Thermomechanik. Dr.-Ing. Thesis, Kassel, 1994.

    Google Scholar 

  12. Lion, A.: A physically based method to represent the thermo-mechanical behaviour of elastomers. Acta Mechanica, Vol. 123, pp. 1–25 (1997).

    Google Scholar 

  13. Chatzigeorgiou, G.; Charalambakis, N.; Chemisky, Y.; Meraghni, F.: Periodic homogenization for fully coupled thermomechanical modeling of dissipative generalized standard materials. IJournal of Plasticity, 81, pp. 18–39 (2016).

    Google Scholar 

  14. Brinson, H. F; Brinson, C.:Polymer Engineering Science and Viscoelasticity, Springer, NY, 2015.

    Google Scholar 

  15. Catsiff, E.; Tobolsky, A.V.: Stress-relaxation of polyisobutylene in the transition region (1, 2), Journal of Colloidal and Interface Science 10, 1955, 375–392.

    Google Scholar 

  16. Knops, M.: Analysis of failure in fiber polymer laminates. The theory of Alfred Puck. New York 2008, Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  17. Wang, Y.; Tong, M.; Zhu, S.: Three dimensional continuum damage mechanics model of progressive failure analysis in fibre-reinforced composite laminates, Nanjing University, China 2009, AIAA 2009– 2629.

    Google Scholar 

  18. Deuschle, H. M.: 3D Failure Analysis of UD Fibre Reinforced Composites: Puck’s Theory within FEA, Universitat Stuttgart 2010.

    Google Scholar 

Download references

Acknowledgements

This research was funded with a grant from the Federal Ministry for Economic Affairs and Energy of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Ziegenhorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ziegenhorn, M., Grzelak, E., Sawicki, M., Schob, D., Sparr, H. (2017). Chaboche Material Model and Thermo-Mechanical Behaviour of Polymers with Respect to Fatigue. In: Rusiński, E., Pietrusiak, D. (eds) Proceedings of the 13th International Scientific Conference . RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-50938-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50938-9_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50937-2

  • Online ISBN: 978-3-319-50938-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics