Skip to main content

Nutraceutical and Nutrients Development for Space Travel

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals

Abstract

Nutrition has a key role inthe functioning of the body; poor nutrition compromises all the physiological systems. From the basic impact of nutrient intake on health maintenance to the psychosocial benefits of mealtime, great advancements in nutritional sciences for support of human space travel have occurred over the past 60 years. Nutrition in space has many areas of impact, including provision of required nutrients and maintenance of endocrine, immune, and musculoskeletal systems. It is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. Psychosocial aspects of nutrition are also important for more productive missions and crew morale. Nutrition has critical multiple roles in the health of astronauts such as physical training during space flight from providing sufficient nutrients to meet the metabolic needs of the body and to maintain good health, to the beneficial psychosocial aspects related to the meals. Research conducted to determine the impact of spaceflight on human physiology and subsequent nutritional requirements will also have direct and indirect applications in Earth-based nutrition research. Cumulative nutritional research over the past five decades has resulted in the current nutritional requirements for astronauts. Realization of the full role of nutrition during spaceflight is critical for the success of extended-duration missions. Long-duration missions will require quantitation of nutrient requirements for maintenance of health and protection against the effects of microgravity. This chapter reviews state of the art and highlight areas of ongoing research on nutrients and nutraceutical and perspectives for future exploration of the Moon, Mars, asteroids, and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alfrey CP, Udden MM, Leach-Huntoon C, Driscoll T, Pickett MH (1996) Control of red blood cell mass in spaceflight. J Appl Physiol 81:98–104

    Article  CAS  Google Scholar 

  • Alfrey CP, Rice L, Udden MM, Driscoll TB (1997) Neocytolysis: physiological down-regulator of red-cell mass. Lancet 349:1389–1390

    CAS  PubMed  Google Scholar 

  • Armbrecht G, Belavy DL, Gast U, Bongrazio M, Touby F, Beller G et al (2010) Resistive vibration exercise attenuates bone and muscle atrophy in 56 days of bed rest: biochemical markers of bone metabolism. Osteoporos Int 21:597–607

    CAS  PubMed  Google Scholar 

  • Arunachalam K, Gill HS, Chandra RK (2000) Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019). Eur J Clin Nutr 54(3):263–267

    CAS  PubMed  Google Scholar 

  • Aubert AE, Beckers F, Verheyden B (2005) Cardiovascular function and basics of physiology in microgravity. Acta Cardiol 60(2):129–151

    PubMed  Google Scholar 

  • Baecker N, Frings-Meuthen P, Heer M, Mester J, Liphardt AM (2012) Effects of vibration training on bone metabolism: results from a short-term bed rest study. Eur J Appl Physiol 112:1741–1750

    CAS  PubMed  Google Scholar 

  • Baldwin KM (1995) Future research directions in seeking countermeasures to weightlessness. J Gravit Physiol 2(1):P51-3

    PubMed  Google Scholar 

  • Beijer A, Rosenberger A, Weber T, Zange J, May F, Schoenau E et al (2013) Randomized controlled study on resistive vibration exercise (EVE study): protocol, implementation and feasibility. J Musculoskelet Neuronal Interact 13:147–156

    CAS  PubMed  Google Scholar 

  • Beisel WR (1992) History of nutritional immunology: introduction and overview. J Nutr 122(3 Suppl):591–596

    CAS  PubMed  Google Scholar 

  • Belavy DL, Armbrecht G, Gast U, Richardson CA, Hides JA, Felsenberg D (2010) Countermeasures against lumbar spine deconditioning in prolonged bed rest: resistive exercise with and without whole body vibration. J Appl Physiol 109:1801–1811

    PubMed  Google Scholar 

  • Bhaskaram P (2002) Micronutrient malnutrition, infection, and immunity: an overview. Nutr Rev 60(5 Pt 2):S40–S45

    PubMed  Google Scholar 

  • Bone RA, Landrum JT, Dixon Z, Chen Y, Llerena CM (2000) Lutein and zeaxanthin in the eyes, serum and diet of human subjects. Exp Eye Res 71(3):239–245

    CAS  PubMed  Google Scholar 

  • Brooks N, Cloutier GJ, Cadena SM, Layne JE et al (2008) Resistance training and timed essential amino acids protect against the loss of muscle mass and strength during 28 days of bed rest and energy deficit. J Appl Physiol 105(1):241–248

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh PR, Licata AA, Rice AJ (2005) Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravit Space Biol Bull 18:39–58

    PubMed  Google Scholar 

  • Chan ME, Uzer G, Rubin CT (2013) The potential benefi ts and inherent risks of vibration as a non-drug therapy for the prevention and treatment of osteoporosis. Curr Osteoporos Rep 11:36–44

    PubMed  PubMed Central  Google Scholar 

  • Chandra RK (1997) Nutrition and the immune system: an introduction. Am J Clin Nutr 66(2):460S–463S

    CAS  PubMed  Google Scholar 

  • Chandra RK (1999) Nutrition and immunology: from the clinic to the cellular biology and back again. Proc Nutr Soc 58:681–683

    CAS  PubMed  Google Scholar 

  • Chandra RK (2003) Nutrient regulation of immune functions. Forum Nutr 56:147–148

    CAS  PubMed  Google Scholar 

  • Chylack LT Jr, Feiveson AH, Peterson LE, Tung WH et al (2012) NASCA report 2: longitudinal study of relationship of exposure to space radiation and risk of lens opacity. Radiat Res 178(1):25–32

    CAS  PubMed  Google Scholar 

  • Convertino VA (2002) Planning strategies for development of effective exercise and nutrition countermeasures for long-duration space flight. Nutrition 18:880–888

    PubMed  Google Scholar 

  • Cucinotta FA, Manuel FK, Jones J, Iszard G et al (2001) Space radiation and cataracts in astronauts. Radiat Res 156(5 Pt 1):460–466

    CAS  PubMed  Google Scholar 

  • Cunningham-Rundles S, McNeeley DF, Moon A (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115(6):1119–1128

    CAS  PubMed  Google Scholar 

  • Di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibres to human motion. J Biomech 36(3):403–412

    PubMed  Google Scholar 

  • Donald B (1999) McCormick nutritional recommendation for spaceflight. In: Lane HL, Schoeller DA (eds) Nutrition in spaceflight and weightlessness models. CRC Press LLC, pp 253–259

    Google Scholar 

  • Drummer C, Hesse C, Baisch F, Norsk P, Elmann-Larsen B, Gerzer R, Heer M (2000) Water and sodium balances and their relation to body mass changes in microgravity. Eur J Clin Invest 30(12):1066–1075

    CAS  PubMed  Google Scholar 

  • Drummer C, Norsk P, Heer M (2001) Water and sodium balance in space. Am J Kidney Dis 38(3):684–690

    CAS  PubMed  Google Scholar 

  • Ferrando AA, Tipton KD, Bamman MM, Wolfe RR (1997) Resistance exercise maintains skeletal muscle protein synthesis during bed rest. J Appl Physiol (1985) 82(3):807–810

    CAS  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Invited review: microgravity and skeletal muscle. J Appl Physiol 89(2):823–839

    CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan R, Genc KO, Rice AJ, Lee SM et al (2010) Muscle volume, strength, endurance, and exercise loads during 6-month missions in space. Aviat Space Environ Med 81(2):91–102

    PubMed  Google Scholar 

  • Gretebeck RJ, Greenleaf JE (2000) Utility of ground-based simulations of weightlessness. In: Lane HW, Schoeller DA (eds) Nutrition in spaceflight and weightlessness models. CRC Press, Boca Raton, p 69

    Google Scholar 

  • Hackney KJ, Scott JM, Hanson AM, English KL, Downs ME, Ploutz-Snyder LL (2015) The astronaut-athlete: optimizing human performance in space. J Strength Cond Res 29(12):3531–3545

    PubMed  Google Scholar 

  • Hawkey A (2003) The importance of exercising in space. Interdiscip Sci Rev 28(2):130–138

    PubMed  Google Scholar 

  • Holguin N, Muir J, Rubin C, Judex S (2009) Short applications of very low-magnitude vibrations attenuate expansion of the intervertebral disc during extended bed rest. Spine J 9:470–477

    PubMed  Google Scholar 

  • Isolauri E, Sutas Y, Kankaanpaa P, Arvilommi H, Salminen S (2001) Probiotics: effects on immunity. Am J Clin Nutr 73(2 S):444S–450S

    CAS  PubMed  Google Scholar 

  • Keith ME, Jeejeebhoy KN (1997) Immunonutrition. Bailliere Clin Endocrinol Metab 11(4):709–738

    CAS  Google Scholar 

  • Konstantinova IV, Rykova MP, Lesnyak AT, Antropova EA (1993) Immune changes during long-duration missions. J Leukoc Biol 54(3):189–201

    CAS  PubMed  Google Scholar 

  • Konstantinova IV, Rykova M, Meshkov D, Peres C, Husson D, Schmitt DA (1995) Natural killer cells after ALTAIR mission. Acta Astronaut 36(8–12):713–718

    CAS  PubMed  Google Scholar 

  • Lane HW, Schoeller DA (1999) Overview: history of nutrition and spaceflight. In: Lane HW, Schoeller DA (eds) Nutrition in spaceflight and weightlessness models. CRC Press LLC, pp 1–18

    Google Scholar 

  • Lane HW, Schoeller D (2000) Nutrition in spaceflight and weightlessness models. CRC Press, Boca Raton

    Google Scholar 

  • Lane HW, Smith SM (1999) Nutrition in space. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease, 9th edn. Lippincott Williams & Wilkins, Baltimore, pp 783–788

    Google Scholar 

  • Lane HW, Bourland C, Barrett A, Heer M, Smith SM (2013) The role of nutritional research in the success of human space flight. Adv Nutr 4(5):521–523

    PubMed  PubMed Central  Google Scholar 

  • Leach CS (1992) Biochemical and hematologic changes after short-term space flight. Microgravity Q 2:69–75

    CAS  PubMed  Google Scholar 

  • Lee SM, Schneider SM, Feiveson AH, Macias BR et al (2014) WISE-2005: countermeasures to prevent muscle deconditioning during bed rest in women. J Appl Physiol 116:654

    PubMed  Google Scholar 

  • Levine DS, Greenleaf JE (1998) Immunosuppression during spaceflight deconditioning. Aviat Space Environ Med 69(2):172–177

    CAS  PubMed  Google Scholar 

  • Macias BR, Groppo ER, Eastlack RK, Watenpaugh DE, Lee SM, Schneider SM et al (2005) Space exercise and earth benefits. Curr Pharm Biotechnol 6:305–317

    CAS  PubMed  Google Scholar 

  • Mader TH, Gibson CR, Pass AF, Kramer LA et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10):2058–2069

    PubMed  Google Scholar 

  • Mendes JFR, Arrruda SF, de Almeida Siquira EM, Ito MK, da Silva EF (2009) Iron status and oxidative stress biomarkers in adults: a preliminary study. Nutrition 25:379–384

    CAS  PubMed  Google Scholar 

  • Michel EL, Rummel JA, Sawin CF (1975) Skylab experiment M-171 “metabolic activity”–results of the first manned mission. Acta Astronaut 2:351–365

    CAS  PubMed  Google Scholar 

  • Michel EL, Rummel JA, Sawin CF, Buderer MC, Lem JD (1977) Results of Skylab medical experiment M-171 – metabolic activity. In: Johnston RS, Dietlein LF (eds) Biomedical results of Skylab NASA SP-377. NASA, Washington, DC, pp 372–387

    Google Scholar 

  • Mizock BA (2010) Immunonutrition and critical illness: an update. Nutrition 26(7–8):701–707

    CAS  PubMed  Google Scholar 

  • Moore AD, Lee SMC, Stenger MB, Platts SH (2010) Cardiovascular exercise in the U.S. space program: past, present, and future. Acta Astronaut 66:974–988

    CAS  Google Scholar 

  • NASA – Vegetable Production System (Veggie) – 07.20.16. http://www.nasa.gov/mission_pages/station/research/experiments/383.html

  • NASA – Veggie Plant Growth System Activated on International Space Station – 05.16.14. http://www.nasa.gov/content/veggie-plant-growth-system-activated-on-international-space-station/

  • National Aeronautics and Space Administration Johnson Space Center (1996) Nutritional requirements for International Space Station (ISS) missions up to 360 days. National Aeronautics and Space Administration Lyndon B. Johnson Space Center, Houston. Report No.: JSC-28038

    Google Scholar 

  • Nestle M, Wing R, Birch L, DiSogra L, Drewnowski A, Middleton S, Sigman-Grant M, Sobal J, Winston M, Economos C (1998) Behavioural and social influences on food choice. Nutr Rev 56(5 Pt 2):S50–S64

    CAS  PubMed  Google Scholar 

  • Nicogossian AE, Pool SL, Uri JJ (1994) Historical perspectives. In: Nicogossian AE, Huntoon CL, Pool SL (eds) Space physiology and medicine. Lea & Febiger, Philadelphia, p 3

    Google Scholar 

  • Oganov VS, Bogomolov VV (2009) Human bone system in microgravity: review of research data, hypotheses and predictability of musculoskeletal system state in extended (exploration) missions. Aviakosm Ekolog Med 43:3–12

    CAS  PubMed  Google Scholar 

  • Orwoll ES, Adler RA, Amin S, Binkley N, Lewiecki EM, Petak SM, Shapses SA, Sinaki M, Watts NB, Sibonga JD (2013) Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA bone summit. J Bone Miner Res 28:1243–1255

    PubMed  Google Scholar 

  • Popova IA, Grigoriev AI (1994) Metabolic effect of space flight. Adv Space Biol Med 4:69–83

    CAS  PubMed  Google Scholar 

  • Rambaut P, Leach C, Leonard J (1977) Observations in energy balance in man during spaceflight. Am J Phys 233:R208–R212

    CAS  Google Scholar 

  • Rizos EC, Ntzani EE, Bika E, Kostapanos MS et al (2012) Association between omega-3 fatty acid supplementation and risk of major cardiovascular disease events: a systematic review and meta-analysis. JAMA 308(10):1024–1033

    CAS  PubMed  Google Scholar 

  • Rolls BJ (1985) Experimental analyses of the effects of variety in a meal on human feeding. Am J Clin Nutr 42(5S):932–939

    CAS  PubMed  Google Scholar 

  • Sacheck JM, Blumberg JB (2001) Role of vitamin E and oxidative stress in exercise. Nutrition 17(10):809–814

    CAS  PubMed  Google Scholar 

  • Schneider H, Atkinson SW (2000) Immunonutrition – fact or fad. J Nutr Health Aging 4(2):120–123

    CAS  PubMed  Google Scholar 

  • Sibonga JD (2013) Spaceflight-induced bone loss: is there an osteoporosis risk? Curr Osteoporos Rep 11(2):92–98

    PubMed  Google Scholar 

  • Smith SM (2002) Red blood cell and iron metabolism during space flight. Nutrition 18(10):864–866

    CAS  PubMed  Google Scholar 

  • Smith MC Jr, Rambaut PC, Stadler CR (1977) Skylab nutritional studies. Life Sci Space Res 15:193–197

    CAS  PubMed  Google Scholar 

  • Smith SM, Zwart SR (2008) Nutritional biochemistry of spaceflight. Adv Clin Chem 46:87–130

    CAS  PubMed  Google Scholar 

  • Smith SM, Davis-Street JE, Rice BL, Nillen JL et al (2001) Nutritional status assessment in semiclosed environments: ground-based and space flight studies in humans. J Nutr 131(7):2053–2061

    CAS  PubMed  Google Scholar 

  • Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE (2005) The nutritional status of astronauts is altered after long- term space flight aboard the international Space Station. J Nutr 135:437–443

    CAS  PubMed  Google Scholar 

  • Smith SM, Zwart SR, Kloeris V, Heer M (2009) Nutritional biochemistry of space flight. Nova Science Publishers, New York

    Google Scholar 

  • Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27(9):1896–1906

    CAS  PubMed  Google Scholar 

  • Smith SM, Abrams SA, Davis-Street JE, Heer M, O’Brien KO, Wastney ME et al (2014a) 50 years of human space travel: implications for bone and calcium research. Annu Rev Nutr 34:377–400

    CAS  PubMed  Google Scholar 

  • Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL (2014b) Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res 29(7):1639–1645

    PubMed  Google Scholar 

  • Sonnenfeld G (1999) Space flight, microgravity, stress, and immune responses. Adv Space Res 23(12):1945–1953

    CAS  PubMed  Google Scholar 

  • Sonnenfeld G (2005) The immune system in space, including earth-based benefits of space-based research. Curr Pharm Biotechnol 6(4):343–349

    CAS  PubMed  Google Scholar 

  • Sonnenfeld G, Shearer WT (2002) Immune function during space flight. Nutrition 18(10):899–903

    CAS  PubMed  Google Scholar 

  • Stein T (2002) Space flight and oxidative stress. Nutrition 18(10):867

    CAS  PubMed  Google Scholar 

  • Stein TP, Leskiw MJ (2000) Oxidant damage during and after spaceflight. Am J Physiol Endocrinol Metab 278(3):E375–E382

    CAS  PubMed  Google Scholar 

  • Stein TP, Wade CE (2001) The catecholamine response to spaceflight: role of diet and gender. Am J Physiol Endocrinol Metab 281(3):E500–E506

    CAS  PubMed  Google Scholar 

  • Stein TP, Leskiw MJ, Schluter MD, Donaldson MR, Larina I (1999) Protein kinetics during and after long-duration spaceflight on MIR. Am J Phys 276:E1014–E1021

    CAS  Google Scholar 

  • Stein TP, Schluter MD, Leskiw MJ, Boden G (1999) Attenuation of the protein wasting associated with bed rest by branched-chain amino acids. Nutrition 15(9):656–660

    Google Scholar 

  • Stowe RP, Pierson DL, Barrett AD (2001) Elevated stress hormone levels relate to Epstein-Barr virus reactivation in astronauts. Psychosom Med 63(6):891–895

    CAS  PubMed  Google Scholar 

  • Syrovatka P, Kraml P, Potockova J, Fialova L, Vejrazka M, Crkovska J et al (2009) Relationship between increased body iron stores, oxidative stress and insulin resistance in healthy men. Ann Nutr Metab 54:268–274

    CAS  PubMed  Google Scholar 

  • Thumma T, Robinson JA, Alleyne C, Hasbrook P, Mayo S, Buckley N et al (2014) International space station accomplishments update: scientific discovery, advancing future exploration, and benefits brought home to earth. Acta Astronaut 103:235–242

    Google Scholar 

  • Trappe TA, Burd NA, Louis ES, Lee GA et al (2007) Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol (Oxf) 191(2):147–159

    CAS  Google Scholar 

  • Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H et al (2009) Exercise in space: human skeletal muscle after 6 months aboard the international Space Station. J Appl Physiol 106(4):1159–1168

    PubMed  Google Scholar 

  • Tuomainen TP, Loft S, Nyyssonen K, Punnonen K, Salonen JT, Poulsen HE (2007) Body iron is a contributor to oxidative damage of DNA. Free Radic Res 41:324–328

    CAS  PubMed  Google Scholar 

  • Varma M, Sato T, Zhang L, Meguid MM (2000) Space flight related anorexia. Lancet 356(9230):681

    CAS  PubMed  Google Scholar 

  • Vodovotz Y, Smith SM, Lane HW (2000) Food and nutrition in space: application to human health. Nutrition 16:534

    CAS  PubMed  Google Scholar 

  • Weaver CM, LeBlanc A, Smith SM (2000) Calcium and related nutrients in bone metabolism. In: Lane HW, Schoeller DA (eds) Nutrition in spaceflight and weightlessness models. CRC Press, Boca Raton, pp 179–201

    Google Scholar 

  • Wintergerst ES, Maggini S, Hornig DH (2007) Contribution of selected vitamins and trace elements to immune function. Ann Nutr Metab 51(4):301–323

    CAS  PubMed  Google Scholar 

  • Zhang LF (2013) Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 113(12):2873–2895

    PubMed  Google Scholar 

  • Zwart SR, Morgan JL, Smith SM (2013) Iron status and its relations with oxidative damage and bone loss during long-duration space flight on the international Space Station. Am J Clin Nutr 98:217–223

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catalano Enrico .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Enrico, C. (2021). Nutraceutical and Nutrients Development for Space Travel. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics