Skip to main content

Vehicle Stability Controller Based on Adaptive Sliding Mode Algorithm with Estimated Vehicle Side-Slip Angle

  • Conference paper
  • First Online:
AETA 2016: Recent Advances in Electrical Engineering and Related Sciences (AETA 2016)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 415))

Abstract

This paper presents a vehicle stability controller acting on the braking system to generate a compensated yaw moment. The goal is to minimize the yaw-rate error and ensure that the side-slip angle is within acceptable limits. The controller is derived using an adaptive sliding mode algorithm with the estimated vehicle side-slip angle. The proposed algorithm takes the advantages of fast response, favorable transient performance, and robust parameter variations. The estimator is derived by using an extended Kalman filtering algorithm. Both the controller and estimator are designed basing on a seven-degree-of-freedom vehicle model. The simulation results of the control system evidenced high performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, B.C., Hsieh, F.C.: Side-slip angle estimation using extended Kalman filter. Veh. Syst. Dyn. 46, 353–364 (2008)

    Article  Google Scholar 

  2. Nam, K., Fujimoto, H., Hori, Y.: Design of an adaptive sliding mode controller for robust yaw stabilisation of in-wheel-motor-driven electric vehicles. Int. J. Veh. Des. 67(1), 98–113 (2015)

    Article  Google Scholar 

  3. Ghosh, S., Deb, A., Mahala, M., Tanbakuchi, M., Makowski, M.: Active yaw control of a vehicle using a fuzzy logic algorithm. In: SAE World Congress & Exhibition, SAE Technical Paper 2012-01-0229 (2012)

    Google Scholar 

  4. Annamalai, R., Marathe, M., Karle, U.S., Venkatesan, K.P., McCoy, C., Toth-Antal, B.: Development of vehicle yaw stability controller. In: SAE Conference, SAE Technical Paper 2013-26-0086 (2013)

    Google Scholar 

  5. Van Zanten, A.T.: Bosch ESP systems: 5 years of experience. SAE Trans. 109(7), 428–436 (2000)

    Google Scholar 

  6. Nishio, A., Tozu, K., Yamaguchi, H., Asano, K., Amano, Y.: Development of vehicle stability control system based on vehicle side-slip angle estimation. SAE Trans. 110(6), 115–122 (2001)

    Google Scholar 

  7. Nguyen, B.M., Wang, Y., Fujimoto, H., Horim, Y.: Electric vehicle stability control based on disturbance accommodating Kalman filter using GPS. In: IEEE International Conference on Mechatronics (ICM), 27 February–1 March 2013 (2013)

    Google Scholar 

  8. Chen, C.K., Dao, T.K., Lin, H.P.: A compensated yaw-moment-based vehicle stability controller. Int. J. Veh. Des. 53(3), 220–238 (2010)

    Article  Google Scholar 

  9. Jianhua, G., Liang, C., Feikun, Z., Liang, Y.: Coordinated control of AFS and ESP based on fuzzy logic method. In: International Conference on Mechatronic Science, Electric Engineering and Computer, 19–22 August 2011 (2011)

    Google Scholar 

  10. Choi, M., Choi, S.B.: Model predictive control for vehicle yaw stability with practical concerns. IEEE Trans. Veh. Tech. 63(8), 3539–3548 (2014)

    Article  Google Scholar 

  11. Le, A.T., Chen, C.K.: Adaptive sliding mode control for a vehicle stability system. In: Proceedings of the 4th International Conference on Connected Vehicles and Expo (ICCVE 2015), 19–23 October 2015 (2015)

    Google Scholar 

  12. Le, A.T., Chen, C.K.: Vehicle stability control by using an adaptive sliding-mode algorithm. Int. J. Veh. Des. 72, 107–131 (2016)

    Article  Google Scholar 

  13. Canale, M., Fagiano, L., Ferrara, A., Vecchio, C.: Vehicle yaw control via second-order sliding-mode technique. IEEE Trans. Ind. Electr. 55(11), 3908–3916 (2008)

    Article  Google Scholar 

  14. Chen, C.-K., Le, A.-T.: Vehicle side-slip angle and lateral force estimator based on extended Kalman filtering algorithm. In: Duy, V.H., Dao, T.T., Zelinka, I., Choi, H.-S., Chadli, M. (eds.) AETA 2015. LNEE, vol. 371, pp. 377–388. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27247-4_33

    Chapter  Google Scholar 

  15. Rajamani, R.: Vehicle Dynamics and Control. Springer, New York (2006)

    MATH  Google Scholar 

  16. Wong, J.Y.: Theory of Ground Vehicles, 3rd edn. Wiley, New York (2001)

    Google Scholar 

  17. Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs (1991). Chapter 7: 267–307

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh-Tuan Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Le, AT. (2017). Vehicle Stability Controller Based on Adaptive Sliding Mode Algorithm with Estimated Vehicle Side-Slip Angle. In: Duy, V., Dao, T., Kim, S., Tien, N., Zelinka, I. (eds) AETA 2016: Recent Advances in Electrical Engineering and Related Sciences. AETA 2016. Lecture Notes in Electrical Engineering, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-50904-4_89

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50904-4_89

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50903-7

  • Online ISBN: 978-3-319-50904-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics