Skip to main content

Vision-Based Self-contained Target Following Robot Using Bayesian Data Fusion

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

Several visual following robots have been proposed in recent years. However, many require the use of several, expensive sensors and often the majority of the image processing and other calculations are performed off-board. This paper proposes a simple and cost effective, yet robust visual following robot capable of tracking a general object with limited restrictions on target characteristics. To detect the objects, tracking-learning-detection (TLD) is used within a Bayesian framework to filter and fuse the measurements. A time-of-flight (ToF) depth camera is used to refine the distance estimates at short ranges. The algorithms are executed in real-time (approximately 30 fps) in a Jetson TK1 embedded computer. Experiments were conducted with different target objects to validate the system in scenarios including occlusions and various illumination conditions as well as to show how the data fusion between TLD and the ToF camera improves the distance estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.nvidia.com/object/tegra-k1-processor.html.

  2. 2.

    Although other ToF cameras such as the classic SR4000 from MESA imaging, the PMD CamCube 3.0 or SoftKinetic’s DS536A have ranges of up to 5 m, the low-cost and lightweight Senz3D was deemed sufficient for our purposes.

  3. 3.

    Note that the set points \(s_{p_u}\) and \(s_{p_z}\) correspond to the desired target position with respect to the robot, not to the actual robot position. The controllers use the set points to move the robot so that the difference between the estimated position and the set point is minimized.

References

  1. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Rob. Syst. 53, 263–296 (2008)

    Article  Google Scholar 

  2. Jung, B., Sukhatme, G.S.: Real-time motion tracking from a mobile robot. Int. J. Soc. Robot. 2, 63–78 (2010)

    Article  Google Scholar 

  3. Papanikolopoulos, N.P., Khosla, P.K., Kanade, T.: Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision. IEEE Trans. Robot. Autom. 9, 14–35 (1993)

    Article  Google Scholar 

  4. Ahrens, S., Levine, D., Andrews, G., How, J.P.: Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 2643–2648 (2009)

    Google Scholar 

  5. Fowers, S.G., Lee, D.J., Tippetts, B.J., Lillywhite, K.D., Dennis, A.W., Archibald, J.K.: Vision aided stabilization and the development of a quad-rotor micro UAV. In: International Symposium on Computational Intelligence in Robotics and Automation, CIRA 2007, pp. 143–148 (2007)

    Google Scholar 

  6. Kwon, H., Yoon, Y., Park, J.B., Kak, A.C.: Person tracking with a mobile robot using two uncalibrated independently moving cameras. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 2877–2883 (2005)

    Google Scholar 

  7. Schlegel, C., Illmann, J., Jaberg, H., Schuster, M., Wrz, R.: Vision based person tracking with a mobile robot. In: BMVC, pp. 1–10 (1998)

    Google Scholar 

  8. Benavidez, P., Jamshidi, M.: Mobile robot navigation and target tracking system. In: 2011 6th International Conference on System of Systems Engineering (SoSE), pp. 299–304 (2011)

    Google Scholar 

  9. Hu, C., Ma, X., Dai, X.: A robust person tracking and following approach for mobile robot. In: International Conference on Mechatronics and Automation, ICMA 2007, pp. 3571–3576 (2007)

    Google Scholar 

  10. Kim, J., Shim, D.H.: A vision-based target tracking control system of a quadrotor by using a tablet computer. In: 2013 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1165–1172 (2013)

    Google Scholar 

  11. Papachristos, C., Tzoumanikas, D., Alexis, K., Tzes, A.: Autonomous robotic aerial tracking, avoidance, and seeking of a mobile human subject. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 444–454. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27857-5_40

    Chapter  Google Scholar 

  12. Woods, A.C., La, H.M.: Dynamic target tracking and obstacle avoidance using a drone. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 857–866. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27857-5_76

    Chapter  Google Scholar 

  13. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1409–1422 (2012)

    Article  Google Scholar 

  14. Ma, X., Hu, C., Dai, X., Qian, K.: Sensor integration for person tracking and following with mobile robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3254–3259 (2008)

    Google Scholar 

  15. Clark, M., Feldpausch, D., Tewolde, G.S.: Microsoft kinect sensor for real-time color tracking robot. In: 2014 IEEE International Conference on Electro/Information Technology (EIT), pp. 416–421 (2014)

    Google Scholar 

  16. Teuliere, C., Eck, L., Marchand, E.: Chasing a moving target from a flying UAV. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4929–4934 (2011)

    Google Scholar 

  17. Guerin, F., Fabri, S.G., Bugeja, M.K.: Double exponential smoothing for predictive vision based target tracking of a wheeled mobile robot. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 3535–3540 (2013)

    Google Scholar 

  18. Wang, W.J., Chang, J.W.: Implementation of a mobile robot for people following. In: 2012 International Conference on System Science and Engineering (ICSSE), pp. 112–116 (2012)

    Google Scholar 

  19. Pieropan, A., Bergström, N., Ishikawa, M., Kjellström, H.: Robust 3d tracking of unknown objects. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2410–2417. IEEE (2015)

    Google Scholar 

  20. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 983–990 (2009)

    Google Scholar 

  21. Rigatos, G.G.: Extended kalman and particle filtering for sensor fusion in motion control of mobile robots. Math. Comput. Simul. 81, 590–607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dinh, T.B., Yu, Q., Medioni, G.: Co-trained generative and discriminative trackers with cascade particle filter. Comput. Vis. Image Underst. 119, 41–56 (2014)

    Article  Google Scholar 

  23. Medeiros, H., Park, J., Kak, A.: Distributed object tracking using a cluster-based kalman filter in wireless camera networks. IEEE J. Sel. Top. Sign. Proces. 2, 448–463 (2008)

    Article  Google Scholar 

  24. Medeiros, H., Holguín, G., Shin, P.J., Park, J.: A parallel histogram-based particle filter for object tracking on SIMD-based smart cameras. Comput. Vis. Image Underst. 114, 1264–1272 (2010)

    Article  Google Scholar 

  25. Yoon, Y., han Yun, W., Yoon, H., Kim, J.: Real-time visual target tracking in RGB-D data for person-following robots. In: 2014 22nd International Conference on Pattern Recognition (ICPR), pp. 2227–2232 (2014)

    Google Scholar 

  26. Shimura, K., Ando, Y., Yoshimi, T., Mizukawa, M.: Research on person following system based on RGB-D features by autonomous robot with multi-kinect sensor. In: 2014 IEEE/SICE International Symposium on System Integration (SII), pp. 304–309 (2014)

    Google Scholar 

  27. Nakamura, T.: Real-time 3-D object tracking using kinect sensor. In: 2011 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 784–788 (2011)

    Google Scholar 

  28. Chen, C.H., Cheng, C., Page, D., Koschan, A., Abidi, M.: A moving object tracked by a mobile robot with real-time obstacles avoidance capacity. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 3, pp. 1091–1094. IEEE (2006)

    Google Scholar 

  29. Nebehay, G.: Robust object tracking based on tracking-learning-detection. Master’s thesis, TU Wien (2012)

    Google Scholar 

  30. Loy, G., Fletcher, L., Apostoloff, N., Zelinsky, A.: An adaptive fusion architecture for target tracking. In: Proceedings of Fifth IEEE International Conference on Automatic Face and Gesture Recognition, 2002, pp. 261–266. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Medeiros .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Guevara, A.E., Hoak, A., Bernal, J.T., Medeiros, H. (2016). Vision-Based Self-contained Target Following Robot Using Bayesian Data Fusion. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_76

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics