Skip to main content

Abstract

The study of enzymes is a subject of special importance to food science in two aspects. Enzymes are known to cause numerous changes, desirable or undesirable, on the chemical and physical attributes in a food system. Some notable examples include the many flavor compounds generated by the action of lipoxygenases on unsaturated lipids, the change of color caused by polyphenol oxidase, and the softening of texture in ripening fruits by pectic enzymes. A thorough understanding of the mechanism of catalysis and regulation of these enzymes is essential to the effective control of the changes during processing and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen JD, Thoma JA (1976) Subsite mapping of enzymes. Biochem J 159:121–132

    Article  CAS  Google Scholar 

  2. Allen JD, Thoma JA (1979) Multimolecular substrate reaction catalyzed by carbohydrates. Aspergillus oryzae α-amylase degradation by maltooligosaccharides. Biochemistry 17:2338–2344

    Article  Google Scholar 

  3. Baker EN, Drenth J (1987) The thiol proteases: structure and mechanism. In: Jurnak FA, McPherson A (eds) Biological macromolecules and assemblies, vol 3. Wiley, New York

    Google Scholar 

  4. Boyington JC, Gaffney BJ, Amzel LM (1993) Structure of soybean lipoxygenase-1. Biochem Soc Trans 21:744–748

    Article  CAS  Google Scholar 

  5. Boyington JC, Gaffney BJ, Amzel LM (1993) The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science 260:1482–1486

    Article  CAS  Google Scholar 

  6. Bourne Y, Martinez C, Kerfelec B, Lombardo D, Chapus C, Cambillau C (1994) Horse pancreatic lipase: the crystal structure refined at 2-3 Å resolution. J Mol Biol 238:709–732

    Article  CAS  Google Scholar 

  7. Bright HJ, Appleby M (1969) The pH dependence of the individual steps in the glucose oxidase reaction. J Biol Chem 244:3625–3634

    CAS  Google Scholar 

  8. Brockerhoff H (1973) A model of pancreatic lipase and the orientation of enzymes at interfaces. Chem Phys Lipids 10:215–222

    Article  CAS  Google Scholar 

  9. Carrell HL, Glusker JP, Burger V, Manfre F, Tritsch D, Biellmann J-F (1989) X-ray analysis of D-xylose isomerase at 11.9 Å: native enzyme in complex with substrate and with a mechanism-designed in activator. Proc Natl Acad USA 86:4440–4444

    Article  CAS  Google Scholar 

  10. Chan HT, Tam SNY (1982) Partial separation and characterization of papaya endo- and exo-polygalacturonase. J Food Sci 47:1478–1483

    Article  CAS  Google Scholar 

  11. Chapus C, Sari H, Semeriva M, Desnuelle P (1975) Role of colipase in the interfacial adsorption of pancreatic lipase at hydrophilic interfaces. FEBS Lett 58:155–158

    Article  CAS  Google Scholar 

  12. Cheesbrough TM, Axelrod B (1983) Determination of the spin state of iron in native and activated soybean lipoxygenase 1 by paramagnetic susceptibility. Biochemistry 22:3837–3840

    Article  CAS  Google Scholar 

  13. Chung H, Friedberg F (1980) Sequence of the N-terminal half of Bacillus amyloliqufaciens α-amylase. Biochem J 185:387–395

    Article  CAS  Google Scholar 

  14. Collyer CA, Henrick K, Blow DM (1990) Mechanism for aldose-ketose interconversion by D-xylose isomerase involving ring opening followed by a 1,2-hydride shift. J Mol Biol 212:211–235

    Article  CAS  Google Scholar 

  15. Dawson HG, Allen WG (1984) The use of enzymes in food technology. Miles Laboratories, Inc., Biotech Products Division, Elkhart

    Google Scholar 

  16. deGroot JJM, Veldink GA, Vliegenthart JFG, Boldingh J, Wever R, van Gelder BF (1975) Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim Biophys Acta 377:71–79

    Article  CAS  Google Scholar 

  17. Drenth J, Jansonius JN, Kockock R, Wolthers BG (1971) Papain, X-ray structure. In: Boyer PD (ed) The enzymes, vol III. Academic, New York

    Google Scholar 

  18. Egmond MR, Vliegenthart JFG, Boldingh J (1972) Stereospecificity of the hydrogen abstraction at carbon atom n-8 in the oxygenation of linoleic acid by lipoxygenases from corn germs and soya beans. Biochem Biophys Res Commun 48:1055–1060

    Article  CAS  Google Scholar 

  19. Farber GK, Glasfeld A, Tiraby G, Ringe D, Petsko GA (1989) Crystallographic studies of the mechanism of xylose isomerase. Biochemistry 28:7289–7297

    Article  CAS  Google Scholar 

  20. Galliard T, Chan HWS (1980) Lipoxygenase. In: Stumpf PK, Conn EE (eds) The biochemistry of plants, a comprehensive treatise, vol 4. Academic, New York

    Google Scholar 

  21. Galliard T, Phillips DR, Reynolds J (1976) The formation of cis-3-nonenal, trans-2-nonenal and hexanal from linoleic acid hydroperoxide isomers by a hydroperoxide cleavage enzyme system in cucumber (Cucumis sativus) fruits. Biochim Biophys Acta 441:181–192

    Article  CAS  Google Scholar 

  22. Gardner HW (1979) Stereospecificity of linoleic acid hydroperoxide isomerase from corn germ. Lipids 14:208–211

    Article  CAS  Google Scholar 

  23. Garssen GJ, Vliegenthart JFG, Boldingh J (1971) An anaerobic reaction between lipoxygenase, linoleic acid and its hydroperoxide. Biochem J 22:327–332

    Article  Google Scholar 

  24. Garssen GJ, Vliegenthart JFG, Boldingh J (1972) The origin and structures of dimeric fatty acids from the anaerobic reaction between soya-bean lipoxygenase, linoleic acid and its hydroperoxide. Biochem J 130:435–442

    Article  CAS  Google Scholar 

  25. Gilson QH, Swoboda BEP, Massey V (1964) Kinetics and mechanism of action of glucose oxidase. J Biol Chem 239:3927–3934

    Google Scholar 

  26. Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D (1993) Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution. J Mol Biol 229:153–172

    Article  CAS  Google Scholar 

  27. Heller MJ, Walder JA, Klotz IM (1977) Intramolecular catalysis of acylation and deacylation in peptides containing cysteine and histidine. J Am Chem Soc 99:2780–2785

    Article  CAS  Google Scholar 

  28. Henrick CA, Collyer A, Blow DM (1989) Structures of D-xylose isomerase from Arthrobacter strain B3728 containing the inhibitors xylitol and D-sorbitol at 2.5 Å and 2.3 Å resolution, respectively. J Mol Biol 208:129–157

    Article  CAS  Google Scholar 

  29. Himmelwright RS, Eickman NC, Lubien CD, Lerch K, Solomon EI (1980) Chemical and spectroscopic studies of the binuclear copper active site of Neurospora tyrosinase: comparison to hemocyanins. J Am Chem Soc 102:7339–7344

    Article  CAS  Google Scholar 

  30. Ismaya W, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW (2011) Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 50:5477–5486

    Article  CAS  Google Scholar 

  31. James TL, Edmondson DE, Husain M (1981) Glucose oxidase contains a disubstituted phosphorus reisude. Phosphorus-31 nuclear magnetic resonance studies of the flavin and nonflavin phosphate residues. Biochemistry 20:617–621

    Article  CAS  Google Scholar 

  32. Jenkins J, Mayans O, Smith D, Worboys K, Pickersgill RW (2001) Three-dimensional structure of Erwinia Chrysanthemi pectin methylesterase reveals a novel esterase active site. J Mol Biol 305:951–960

    Article  CAS  Google Scholar 

  33. Jensen RG, Dejong FA, Clark RM (1983) Determination of lipase specificity. Lipids 18:239–253

    Article  CAS  Google Scholar 

  34. Jensen RG, Gerrior SA, Hagerty MM, McMahon KE (1978) Preparation of acylglycerols and phospholipids with the aid of lipolytic enzymes. JAOCS 55:422–427

    CAS  Google Scholar 

  35. Johansson K, El-Ahmad M, Fridmann R, Jornvall H, Markovic O, Eldund H (2002) Crystal structure of plant pectin methyesterase. FEBS Lett 514:243–249

    Article  CAS  Google Scholar 

  36. Kang CK, Rice EE (1970) Degradation of various meat fractions by tenderizing enzymes. J Food Sci 35:563–565

    Article  CAS  Google Scholar 

  37. Klabunde T, Eicken C, Sacchettini JC, Krebs B (1998) Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol 5:1084–1090

    Article  CAS  Google Scholar 

  38. Lai H-L, Butler LG, Axelrod B (1974) Evidence for a covalent intermediate between α-glucosidase and glucose. Biochem Biophys Res Commun 60:635–640

    Article  CAS  Google Scholar 

  39. Larsson A, Erianson-Albertsson C (1981) The identity and properties of two forms of activated colipase from porcine pancreas. Biochim Biophys Acta 664:538–548

    Article  CAS  Google Scholar 

  40. Lavie A, Allen KN, Petsko GA, Ringe D (1994) X-ray crystallographic structures of D-xylose isomerase-substrate complexes position the substrate and provide evidence for metal movement during catalysis. Biochemistry 33:5469–5480

    Article  CAS  Google Scholar 

  41. Lerch K (1982) Primary structure of tyrosinase from Neurospora crassa. J Biol Chem 257:6414–6419

    CAS  Google Scholar 

  42. Leskovac V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D (2005) Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int J Biochem Cell Biol 37:731–750

    Article  CAS  Google Scholar 

  43. Lewis SD, Johnson FA, Shafer JA (1981) Effect of cysteine-25 on the ionization of histidine-159 in papain as determined by proton nuclear magnetic resonance spectroscopy. Evidence for a His-159-Cys-25 ion pair and its possible role in catalysis. Biochemistry 20:48–51

    Article  CAS  Google Scholar 

  44. Linfield WM, Barauskas RA, Sivieri L, Serota S, Stevenson RW Jr (1984) Enzymatic fat hydrolysis and synthesis. JAOCS 61:191–195

    CAS  Google Scholar 

  45. Liu YK, Luh BS (1978) Purification and characterization of endopolygalacturonase from Rhizopus arrhizus. J Food Sci 43:721–726

    Article  CAS  Google Scholar 

  46. Macrae AR (1983) Lipase-catalyzed interesterification of oils and fats. JAOCS 60:291–294

    CAS  Google Scholar 

  47. Macrae AR (1989) Tailored triacylglycerols and esters. Biochem Soc Trans 17:1146–1989

    Article  CAS  Google Scholar 

  48. McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  CAS  Google Scholar 

  49. Miller L, McMillan J (1971) Purification and pattern of action of pectinesterase from Fusarium oxysporum sp. vasinfectum. Biochemistry 10:570–576

    Article  CAS  Google Scholar 

  50. Misset O (2003) Xylose (Glucose) isomerase. In: Whitaker JR, Voragen AGJ, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, New York

    Google Scholar 

  51. NC-IUBMB (2015) Enzyme nomenclature, recommendations of the nomenclature committe of the international union biochemistry and molecular biology on the nomenclature and classification of enzymes by the reactions they catalyze. www.chem.qmul.ac.uk/ubmb/enzymes

  52. Nita Y, Mizushima M, Hiromi K, Ono S (1971) Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. J Biochem 69:567–576

    Google Scholar 

  53. Palmer JK (1963) Banana polyphenoloxidase. Preparation and properties. Plant Physiol 38:508–513

    Article  CAS  Google Scholar 

  54. Pariza MW, Johnson EA (2001) Evaluating the safety of enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol 33:173–186

    Article  CAS  Google Scholar 

  55. Payan F, Haser R, Pierrot M, Frey M, Astler JP (1980) The three-dimensional structure of α-amylase from porcine pancreas at 5 Å resolution − the active site location. Acta Cryst B36:416–421

    Article  CAS  Google Scholar 

  56. Polgar L (1973) On the mode of activation of the catalytically essential sufhydryl group of papain. Eur J Biochem 33:104–109

    Article  CAS  Google Scholar 

  57. Press J, Ashwell G (1963) Polygalacturonic acid metabolism in bacteria. J Biol Chem 238:1571–1576

    Google Scholar 

  58. Pressey R, Avants JK (1975) Separation and characterization of endo-polygalacturonase and exopolygalacturonase from peaches. Plant Physiol 52:252–256

    Article  Google Scholar 

  59. Pressey R, Avans JK (1975) Modes of action of carrot and peach exopolygalacturonases. Phytochemistry 14:957–961

    Article  CAS  Google Scholar 

  60. Qian M, Haser R, Fayan F (1993) Structure and molecular model refinement of pig pancreatic α-amylase at 2.1 Å resolution. J Mol Biol 231:785–799

    Article  CAS  Google Scholar 

  61. Quinn DM (1985) Solvent isotope effects for lipoprotein lipase catalyzed hydrolysis of water-soluble p-nitrophenyl esters. Biochemistry 24:3144–3149

    Article  CAS  Google Scholar 

  62. Rexova-Benkova L (1973) The size of the substrate-binding site of an Aspergillus niger extracellular endopolygalacturonase. Eur J Biochem 39:109–115

    Article  CAS  Google Scholar 

  63. Rexova-Benkova L, Markovic O (1976) Pectic enzymes. Adv Carbohydr Chem Biochem 33:323–385

    Article  CAS  Google Scholar 

  64. Robyt JF, French D (1970) The action pattern of procine pancreatic α-amylase in relationship to the substrate binding site of the enzyme. J Biol Chem 10:3917–3927

    Google Scholar 

  65. Robyt JF, French D (1970) Multiple attack and polarity of action of porcine pancreatic α-amylase. Arch Biochem Biophys 138:662–670

    Article  CAS  Google Scholar 

  66. Schieberle P, Grosch W, Kexel H, Schmidt H-L (1981) A study of oxygen isotope scrambling in the enzyme and non-enzymic oxidation of linoleic acid. Biochim Biophys Acta 666:322–326

    Article  CAS  Google Scholar 

  67. Semeriva M, Desnuelle P (1979) Pancreatic lipase and colipase. An example of heterogeneous biocatalysis. Adv Enzymol 48:320–371

    Google Scholar 

  68. Slappendel S, Veldink GA, Vliegenthart JFG, Aasa R, Malmstron BG (1981) EPR spectroscopy of soybean lipoxygenase-1. Description and quantification of the high-spin Fe(III) signals. Biochim Biophys Acta 667:77–86

    Article  CAS  Google Scholar 

  69. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Li T (2014) Copper active sites in biology. Chem Rev 114:2659–3853

    Article  Google Scholar 

  70. Storer AC, Carey PR (1985) Comparison of the kinetics and mechanism of the papain-catalyzed hydrolysis of esters and thiono esters. Biochemistry 24:6808–6818

    Article  CAS  Google Scholar 

  71. Strothkamp KG, Jolley RL, Mason HS (1976) Quaternary structure of mushroom tyrosine. Biochem Biophys Res Commun 70:519–524

    Article  CAS  Google Scholar 

  72. Takeda Y, Hizukuri S (1981) Re-examination of the action of sweet-potato beta-amylase on phosphorylated(1->4)-α-D-glucan. Carbohydr Res 89:174–178

    Article  CAS  Google Scholar 

  73. Thoma JA, Spradin JE, Dygert S (1971) Plant and animal amylases. In: Boyer PO (ed) The enzymes, vol V, 3rd edn. Academic, New York

    Google Scholar 

  74. Tsujisaka Y, Okumura S, Iwai M (1977) Glyceride synthesis by four kinds of microbial lipase. Biochim Biophys Acta 489:415–422

    Article  CAS  Google Scholar 

  75. Uhlig H (1998) Industrial enzymes and their applications. Wiley, New York

    Google Scholar 

  76. van Bastelaere PBM, Callens M, Vangrysperre WAE, Kersters-Hilderson HLM (1992) Binding characteristics of Mn2+, Co2+, and Mg2+ ions with several D-xylose isomerases. Biochem J 286:729–735

    Article  Google Scholar 

  77. van Os CPA, Rike-Schider GPM, van Halbeek H, Verhagen J, Vliegenthart JFG (1981) Double dioxygenation of arachidonic acid by soybean lipoxygenase-I. Biochim Biophys Acta 663:177–193

    Article  Google Scholar 

  78. van Santen Y, Benen JAE, Schroter K-H, Kalk KH, Armand S, Visser J, Dijkstra BW (1999) 1.68-Å Crystal structure of endopolygalacturonase II from Aspergillus niger and identification of active site residues by site-directed mutagenesis. J Biol Chem 274:30474–30480

    Article  Google Scholar 

  79. Verhagen J, Veldink GA, Egmond MR, Vliegenthart FG, Boldingh J, van der Star J (1978) Steady-state kinetics of the anaerobic reaction of soybean lipoxygenase-1 with linoleic acid and 13-L-hydroperoxylinoleic acid. Biochim Biophys Acta 529:369–379

    Article  CAS  Google Scholar 

  80. Vick BA, Zimmerman DC (1981) Lipoxygenase, hydroperoxide isomerase, and hydroperoxide cyclase in young cotton seedlings. Plant Physiol 67:92–97

    Article  CAS  Google Scholar 

  81. Virador VM, Grajeda JPR, Blanco-Labra A, Mendiola-Olaya E, Smith GM, Moreno A, Whitaker JR (2010) Cloning, sequencing, purification, and crystal structure of Grenache (Vitis vinifera) polyphenol oxidase. J Agric Food Chem 58:1189–1201

    Article  CAS  Google Scholar 

  82. Weibe MK, Bright HJ (1971) The glucose oxidase mechanism. J Biol Chem 246:2734–2744

    Google Scholar 

  83. Wells MA, DiRenzo NA (1983) Glyceride digestion. In: Boyer PD (ed) The enzymes, vol XVI, 3rd edn. Academic, New York

    Google Scholar 

  84. Whitlow M, Howard AJ, Finzel BC, Poulos TL, Winborne E, Gilliland GL (1991) A metal-mediated hydride shift mechanism for xylose isomerase based on the 1.6 Å Streptomyces rubiginosus structures with xylitol and D-xylose. Proteins Struct Funct Genet 9:153–173

    Article  CAS  Google Scholar 

  85. Wilcox DE, Porras AG, Hwang YT, Lerch K, Winkler ME, Solomon EI (1985) Substrate analogue binding to the coupled binuclear copper active site in tyrosinase. J Am Chem Soc 107:4015–4027

    Article  CAS  Google Scholar 

  86. Winkler ME, Lerch K, Solomon EI (1981) Competitive inhibitor binding to the binuclear copper active site in tyrosinase. J Am Chem Soc 103:7001–7003

    Article  CAS  Google Scholar 

  87. Wohlfahrt G, Trivic S, Zeremski J, Pericin D, Leskovac V (2004) The chemical mechanism of action of glucose oxidase from Aspergillus niger. Mol Cell Biochem 260:69–83

    Article  CAS  Google Scholar 

  88. Yoder MD, Lietzke SE, Jurnak F (1993) Unusual structural features in the parallel β-helix in pectate lyases. Structure 1:241–251

    Article  CAS  Google Scholar 

  89. Yoon S, Klein BP (1979) Some properties of pea lipoxygenase isoenzymes. J Agric Food Chem 27:955–962

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.W.S. (2018). Enzymes. In: Mechanism and Theory in Food Chemistry, Second Edition. Springer, Cham. https://doi.org/10.1007/978-3-319-50766-8_5

Download citation

Publish with us

Policies and ethics