Skip to main content

Abstract

There is a constant and increasing demand for high-quality protein foods for an ever-growing world population. Food scientists are interested not only in the chemical principles underlying protein structures and mechanisms but applications of the knowledge in exploring the unique characteristics of proteins that are relevant in complex food systems. The basic chemistry is always related to the functionality of the protein. Thus, the chemistry of muscle contraction is related to rigor mortis and the postmortem tenderness of meat. The chemical structure of collagen and the unfolding and refolding of the helical chains help to explain the formation of gelatin gel. The understanding of protein chemistry would provide new ideas that challenge food scientists and technologists to improve existing and formulate new food products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adachi M, Takenaka Y, Gidamis AB, Mikami B, Utsumi S (2001) Crystal structure of soybean proglycinin A1aB1b homotrimer. J Mol Biol 305:291–305

    Article  CAS  Google Scholar 

  2. Adachi M, Kanamori J, Masuda T, Yagasaki K, Kitamura K, Mikami B, Utsumi S (2003) Crystal structure of soybean 11S globulin: glycinin A3B4 homohexamer. Proc Natl Acad Sci U S A 100:7395–7400

    Article  CAS  Google Scholar 

  3. Asghar A, Henrickson RL (1982) Chemical, biochemical, functional, and nutritional chracteristics of collagen in food systems. Adv Food Res 28:231–372

    Article  CAS  Google Scholar 

  4. Bell BM, Daniels DGH, Fisher N (1977) Physical aspects of the improvement of dough by fat. Food Chem 2:57–70

    Article  CAS  Google Scholar 

  5. Belton PS (1999) On the elasticity of wheat gluten. J Cereal Sci 29:103–107

    Article  CAS  Google Scholar 

  6. Belton PS (2005) New approaches to study the molecular basis of the mechanical properties of gluten. J Cereal Sci 41:203–211

    Article  CAS  Google Scholar 

  7. Bent DV, Hayon E (1975) Excited state chemistry of aromatic amino acids and related peptides. II. Phenylalanine. J Am Chem Soc 97:2606–2611

    Article  CAS  Google Scholar 

  8. Birktoft JJ, Blow DM (1972) Structure of crystalline α-chymotrypsin. J Mol Biol 68:187–240

    Google Scholar 

  9. Braams R (1966) Rate constants of hydrated electron reactions with amino acids. Radiat Res 27:319–329

    Article  CAS  Google Scholar 

  10. Cherry JP, MeWatter KH (1981) Whippability and aeration. In: Cherry JP (ed) Protein functionality in foods. ACS symposium series, vol 147. American Chemical Society, Washington, D.C.

    Google Scholar 

  11. Clark KA, McElhinny AS, Beckerle MC, Gregorio CC (2002) Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 18:637–706

    Article  CAS  Google Scholar 

  12. Cooke R (2004) The sliding filament model: 1972-2004. J Gen Physiol 123:643–656

    Article  CAS  Google Scholar 

  13. Daigleish DG (1979) Proteolysis and aggregation of casein micelles treated with immobilized or soluble chymosin. J Dairy Res 46:653–661

    Article  Google Scholar 

  14. Dizdaroglu M, Simic MG (1985) Radiation-induced crosslinks between thymine and phenylalanine. Int J Radiat Biol 47:63–69

    CAS  Google Scholar 

  15. Don C, Lichtendonk WJ, Plijter JJ, Hamer RJ (2003) Understanding the link between GMP and dough from glutenin particles in flour towards developed dough. J Cereal Sci 38:157–165

    Article  CAS  Google Scholar 

  16. D’Ovidio R, Masci S (2004) The low-molecular-weight subunits of wheat gluten. J Cereal Sci 39:321–339

    Article  CAS  Google Scholar 

  17. England D (1975) Protein hydration – its role in stabilizing the helix conformation of the protein. In: Duckworth RB (ed) Water relations of foods. Academic, New York

    Google Scholar 

  18. Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207:1315–1322

    Article  CAS  Google Scholar 

  19. Faraggi M, Bettelheim A (1977) The reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solution III. Histidyl peptides. Radiat Res 71:311–324

    Article  CAS  Google Scholar 

  20. Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks CL, Hollar CM, Ng-Kwai-Hang KF, Swaisgood JE (2004) Nomenclature of the proteins of cow’s milk − Sixth Edition. J Dairy Sci 87:1641–1674

    Article  CAS  Google Scholar 

  21. Finnie SM, Jeannotte R, Faubron JM (2009) Quantitative characterization of polar lipids from wheat whole meal, flour, and starch. Cereal Chem 86:637–645

    Article  CAS  Google Scholar 

  22. Frazer DB, MacRae TP (1973) Conformation in fibrous proteins and related synthetic polypeptides. Academic, New York, p 347

    Google Scholar 

  23. Frazier PJ, Brimblecombe FA, Daniels NWR, Eggitt PWR (1977) The effect of lipoxygenase action on the mechanical development of doughs from fat-extracted and reconstituted wheat flour. J Sci Food Agric 28:247–254

    Article  CAS  Google Scholar 

  24. Fox PF, Hoynes MCT (1975) Heat stability of milk: influence of colloidal calcium phosphate and β-lactoglobulin. J Dairy Res 42:427–435

    Article  CAS  Google Scholar 

  25. Fujimoto D, Moriguchi L, Ishida T, Hayashi H (1978) The structure of pyridinoline, a collagen crosslink. Biochem Biophys Res Commun 84:52–57

    Article  CAS  Google Scholar 

  26. Geeves MA, Holmes KC (2005) The molecular mechanism of muscle contraction. Adv Protein Chem 71:161–194

    Article  CAS  Google Scholar 

  27. Gennari G, Gauzzo G, Jori G (1974) Further studies on the crystal-crystal-violet-sensitized photooxidation of cysteine to cysteic acid. Photochem Photobiol 20:497–500

    Article  CAS  Google Scholar 

  28. Gianibelli MC, Larroque OR, MacRitchie F, Wrigley CW (2001) Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chem 78:635–646

    Article  CAS  Google Scholar 

  29. Goll DE, Otsuka Y, Nagainis PA, Shannon JD, Sathe SK, Muguruma M (1983) Role of muscle proteinases in maintenance of muscle integrity and mass. J Food Biochem 7:137–177

    Article  CAS  Google Scholar 

  30. Guo S-T, Ono T (2005) The role of composition and content of protein particles in soymilk on tofu curding by glucono-δ-lactone or calcium sulfate. J Food Sci 70:C252–C262

    Google Scholar 

  31. Hamer RJ, van Vliet T (2000) Understanding the structure and properties of gluten: an overview. In: Shewry PR, Tatham AS (eds) Wheat Gluten proceedings of the 7th international workshop, Gluten 2000. Royal Society of Chemistry 2000, pp 125–131

    Google Scholar 

  32. Harrington WF, Venkateswara R (1970) Collagen structure in solution. I. Kinetics of helix regeneration in single-chain gelations. Biochemistry 9:3714–3724

    Article  CAS  Google Scholar 

  33. Hegarty GR, Bratzler LJ, Pearson AM (1963) Studies on the emulsifying properties of some intracellular beef muscle proteins. J Food Sci 28:663–668

    Article  CAS  Google Scholar 

  34. Hermansson AM (1979) Aggregation and denaturation involved in gel formation. In: Pour-El A (ed) Functionalituy and protein structure. ACS symposium series, vol 92. American Chemical Society, Washington, D.C.

    Google Scholar 

  35. Hermansson AM (1986) Soy protein gelation. J Am Oil Chem Soc 63:658–666

    Article  CAS  Google Scholar 

  36. Hibberd MG (1986) Relationships between chemical and mechanical events during muscular contraction. Ann Rev Biophys Chem 15:119–161

    Article  CAS  Google Scholar 

  37. Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  Google Scholar 

  38. Holt C, Wahlgren NM, Drakenerg T (1996) Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters. Biochem J 314:1035–1039

    Article  CAS  Google Scholar 

  39. Horne DS (1998) Casein interactions: casting light on the black boxes, the structure in dairy products. Int Dairy J 8:171–177

    Article  CAS  Google Scholar 

  40. Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 71:194–204

    Article  CAS  Google Scholar 

  41. Huff-Lonergan E, Mitsuhashi T, Beekman DD, Parrish FC, Dennis GO, Robson RM (1996) Proteolysis of specific muscle structural proteins by μ-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. J Am Sci 74:993–1008

    CAS  Google Scholar 

  42. Hurrell RF, Carpenter KJ (1976) Mechanisms of heat damage in proteins. 7. The significance of lysine-containing isopeptides and of lanthionine in heated proteins. Br J Nutr 35:383–395

    Article  CAS  Google Scholar 

  43. Johansson E, Malik AH, Hussain A, Rasheed F, Newson WR, Plivelic T, Hedenqvist MS, Gallstedt M, Kuktaite R (2013) Wheat gluten polymer structures: the impact of genotype, environment, and processing on their functionality in various applications. Cereal Chem 90:367–376

    Article  CAS  Google Scholar 

  44. Karam LR, Dizdaroglu M, Simic MG (1984) OH radical-induced products of tyrosine peptides. Int J Radiat Biol 46:715–724

    CAS  Google Scholar 

  45. Kasarda DD (1999) Glutenin polymers: the in vitro to in vivo transition. Cereal Foods World 44:566–571

    CAS  Google Scholar 

  46. Kasada DD, Bernardin JE, Nimmo CC (1976) Wheat proteins. Adv Cereal Sci Technol 1:158–236

    Google Scholar 

  47. Kemp CM, Sensky PL, Bardsley RG, Buttery PJ, Parr T (2010) Tenderness – an enzymatic view. Meat Sci 84:248–256

    Article  CAS  Google Scholar 

  48. Kohyama K, Nishinari K (1993) Rheological studies on the gelation process of soybeans 7S and 11S proteins in the presence of glucono-δ-lactone. J Agric Food Chem 41:8–14

    Article  CAS  Google Scholar 

  49. Kohyama K, Sano Y, Doi E (1995) Rheological characteristics and gelation mechanism of tofu (soybean curd). J Agric Food Chem 43:1808–1812

    Article  CAS  Google Scholar 

  50. Lakemond CMM, de Jongh HHJ, Hessing M, Gruppen H, Voragen AGJ (2000) Soy glycinin: influence of pH and ionic strength on solubility and molecular structure at ambient temperatures. J Agric Food Chem 48:1985–1990

    Article  CAS  Google Scholar 

  51. Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–538

    Article  CAS  Google Scholar 

  52. Liardon R, Ledermann S (1986) Racemization kinetics of free and protein-bound amino acids under moderate alkaline treatment. J Agric Food Chem 34:557–565

    Article  CAS  Google Scholar 

  53. Lindsay MP, Skerritt JH (1999) The glutenin macropolymer of wheat flour doughs: structure-function perspectives. Trends Food Sci Technol 10:247–253

    Article  CAS  Google Scholar 

  54. Lindsay MP, Tamas L, Appels R, Skerritt JH (2000) Direct evidence that the number and location of cysteine residues affect glutenin polymer structure. J Cereal Sci 31:321–333

    Article  CAS  Google Scholar 

  55. Lucey JA (2002) Formation and physical properties of milk protein gels. J Dairy Sci 85:281–294

    Article  CAS  Google Scholar 

  56. Maruyama N, Adachi M, Takahashi K, Yagasaki K, Kohno M, Takenaka Y, Okuda E, Nakagawa S, Mikami B, Utsumi S (2001) Crystal structures of recombinant and native soybean β-conglycinin β homotrimers. Eur J Biochem 268:3595–3604

    Article  CAS  Google Scholar 

  57. Maruyama N, Salleh MRM, Takanashi K, Yagasaki K, Goto H, Hontami N, Nakagawa S, Utsumi S (2002) The effect of the N-linked glycans on structural features and physicochemical functions of soybean b-conglycinin homotrimers. JAOCS 79:139–144

    CAS  Google Scholar 

  58. McMahon DJ, Oommen BS (2008) Supramolecular structure of the casein micelle. J Dairy Sci 91:1709–1721

    Article  CAS  Google Scholar 

  59. Melander W, Horvath C (1977) Salt effects on hydrophobic interaction in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    Article  CAS  Google Scholar 

  60. Mo X, Zhong Z, Wang D, Sun X (2006) Soybean glycinin subunits: characterization of physicochemical and adhesion properties. J Agric Food Chem 54:7589–7593

    Article  CAS  Google Scholar 

  61. Morr CV (1990) Current status of soy protein functionality in food systems. JAOCS 67:265–271

    CAS  Google Scholar 

  62. Otterbein LR, Graceffa P, Dominguez R (2001) The crystal structure of uncomplexed actin in the ADP state. Science 293:708–711

    Article  CAS  Google Scholar 

  63. Papiz MZ, Sawyer L, Eliopoulos EE, North ACT, Findley JBC, Siraprasadarao R, Jone TA, Newcomer ME, Kraulis PJ (1986) The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324:383–385

    Article  CAS  Google Scholar 

  64. Pareyt B, Finnie SM, Putreys JA, Delcour JA (2011) Lipids in bread making: sources, interactions, and impact on bread quality. J Cereal Sci 54:266–279

    Article  CAS  Google Scholar 

  65. Payens TAJ (1979) Casein micelles: the colloid-chemical approach. J Dairy Res 46:291–306

    Article  CAS  Google Scholar 

  66. Pearce KL, Rosenvoid K, Andersen HJ, Hopkins DL (2011) Water distribution and mobility in meat during the conversion of muscle to meat and aging and the impacts on fresh meat quality attributes – a review. Meat Sci 89:111–124

    Article  Google Scholar 

  67. Philips MC (1981) Protein conformation at liquid interfaces and its role in stabilizing emulsions and foams. Food Technol 35(1):50–57

    Google Scholar 

  68. Pomeranz Y, Chung OK (1978) Interaction of lipids with proteins and carbohydrates in breadmaking. J Am Oil Chem Soc 55:285–289

    Article  CAS  Google Scholar 

  69. Privalov PL, Khechinashvilli NN (1974) A thermodynamic approach to the problems of stabilization of globular protein structure: a calorimetric study. J Mol Biol 86:665–684

    Article  CAS  Google Scholar 

  70. Qi PF, Wei YM, Yue YW, Yan ZH, Zheng YL (2006) Biochemical and molecular characterization of gliadins. Mol Biol 40:713–723

    Article  CAS  Google Scholar 

  71. Rao PS, Hayon E (1975) Reaction of hydroxyl radicals with oligopeptides in aqueous solutions. A pulse radiolysis study. J Phys Chem 79:109–115

    Article  CAS  Google Scholar 

  72. Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MW, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  CAS  Google Scholar 

  73. Rayment I, Holden HM (1994) The three-dimensional structure of a molecular motor. TIBS 19:129–134

    CAS  Google Scholar 

  74. Renkema JMS, van Vliet T (2002) Heat-induced gel formation by soy proteins at neutral pH. J Agric Food Chem 50:1569–1573

    Article  CAS  Google Scholar 

  75. Richardson JS (1976) Handedness of crossover connections in β sheets. Proc Natl Acad Sci U S A 73:2619–2623

    Article  CAS  Google Scholar 

  76. Richardson JS (1977) β-Sheet topology and the relatedness of proteins. Nature 268:495–500

    Article  CAS  Google Scholar 

  77. Saito I, Matsuura T (1977) Peroxidic intermediates in photosensitized oxygenation of tryptophan derivatives. Acc Chem Res 10:346–352

    Article  CAS  Google Scholar 

  78. Saito I, Matsuura T (1985) Chemical aspects of UV-induced cross-linking of proteins to nucleic aicd. Photoreaction with lysine and tryptophan. Acc Chem Res 18:134–141

    Article  CAS  Google Scholar 

  79. Saio K, Watanabe T (1978) Differences in functional properties of 7S and 11S soybean proteins. J. Texture Stud 9:135–157

    Article  CAS  Google Scholar 

  80. Samejima KJ, Ishioroshi M, Yasui T (1981) Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. J Food Sci 46:1412–1418

    Article  CAS  Google Scholar 

  81. Schaich KM (1980) Free radical initiation in proteins and amino acids by ionizing and ultraviolet. CRC Crit Rev Food Sci Nutr 13:89–129

    Article  CAS  Google Scholar 

  82. Schaich KM (1980) Free radical initiation in proteins and amino acids by ionizing and ultraviolent radiations and lipid oxidation – part II: ultraviolet radiation and photolysis. CRC Crit Rev Food Sci Nutr 13:131–159

    Article  CAS  Google Scholar 

  83. Schaich KM (1980) Free radical initiation in protein and amino acids by ionizing and ultraviolet radiation and lipid oxidation – part III: free radical transfer from oxidizing lipids. CRC Crit Rev Food Sci Nutr 13:189–244

    Article  CAS  Google Scholar 

  84. Schmidt DG (1980) Colloidal aspects of casein. Neth Milk Dairy J 34:42–

    CAS  Google Scholar 

  85. Schmidt DG (1981) Gelation and coagulation. In: Cherry JP (ed) Protein functionality in foods. ACS symposium series, vol 147. American Chemical Society, Washington, D.C.

    Google Scholar 

  86. Schmidt DG (1982) Association of caseins and casein micelle structure. In: Fox PF (ed) Developments in dairy chemistry. Applied Science Publishers, Ltd., London/New York

    Google Scholar 

  87. Shewry PR, Popineau Y, Lafiandra D, Belton P (2001) Wheat glutenin subunits and dough elasticity: findings of the EUROWHEAT project. Trends Food Sci Technol 11:433–441

    Article  Google Scholar 

  88. Singh H (2004) Heat stability of milk. Int J Dairy Technol 57:111–119

    Article  CAS  Google Scholar 

  89. Slattery CW, Evard R (1973) A model for the formation and structure of casein micelles from subunits of variable composition. Biochim Biophys Acta 317:529–538

    Article  CAS  Google Scholar 

  90. Squire JM, Al-Khayat HA, Knup C, Luther PK (2005) Molecular architecture in muscle contractile assemblies. Adv Protein Chem 71:17–87

    Article  CAS  Google Scholar 

  91. Sroan BS, Bean SR, MacRitche F (2009) Mechanism of gas cell stabilization in bread making. I. The primary gluten-starch matrix. J Cereal Sci 49:32–40

    Article  CAS  Google Scholar 

  92. Tamas L, Gras PW, Solomon RG, Morell MK, Appels R, Bekes F (2002) Chain extension and termination as a function of cysteine content and the length of the central repetitive domain in storage proteins. J Cereal Sci 36:313–325

    Article  CAS  Google Scholar 

  93. Tatham AS, Shewy PR (1985) The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of α, β, and γ-gliadins. J Cereal Sci 3:103–113

    Article  CAS  Google Scholar 

  94. Thomson NH, Miles MJ, Popineau Y, Harris J, Shewry P, Tatham AS (1999) Small angle X-ray scattering of wheat seed storage proteins α-, γ- and ω-gliadins and the high molecular weight (HMW) subunits of glutenin. Biochim Biophys Acta Protein Struct Mol Enzymol 1430:359–366

    Article  CAS  Google Scholar 

  95. Utsumi S, Maruyama N, Satoh R, Adachi M (2002) Structure-function relationships of soybean proteins revealed by using recombinant systems. Enzyme Microb Technol 30:284–288

    Article  CAS  Google Scholar 

  96. Wall JS (1979) The role of wheat proteins in determining baking quality. In: Laidman DL, Jones RGW (eds) Recent advances in the biochemistry of cereals. Academic, New York

    Google Scholar 

  97. Watanabe A, Yokomizo K, Eliasson A-C (2003) Effect of physical states of nonpolar lipids in rheology, ultracentrifugation, and microstructure of wheat flour dough. Cereal Chem 80:281–284

    Article  CAS  Google Scholar 

  98. Whitaker JR, Feeney RE (1983) Chemical and physical modification of proteins by the hydroxide ion. CRC Crit Rev Food Sci Nutr 19:173–212

    Article  CAS  Google Scholar 

  99. Wikening VG, Lai M, Arends M, Armstrong DA (1968) The cobalt-60 γ-radiolysis of cysteine in deaerated aqueous solutions at pH values between 5 and 6. J Phys Chem 72:185–190

    Article  Google Scholar 

  100. de Wit JN (2009) Thermal behavior of bovine b-lactoglobulin at temperatures up to 150 °C, a review. Trends Food Sci Technol 20:27–34

    Article  CAS  Google Scholar 

  101. Wolf WJ, Rackis JJ, Smith AK, Sasame HA, Babcock GE (1958) Behavior of the 11S protein of soybeans in acid solutions. I. Effects of pH, ionic strength and time in ultracentrifugal and optical rotatory properties. J Am Chem Soc 80:5730–5735

    Article  CAS  Google Scholar 

  102. Yamamoto O (1972) Radiation-induced binding of methionine with serum albumin, tryptophan or phenylalanine in aqueous solution. Int J Radiat Phys Chem 4:335–345

    Article  CAS  Google Scholar 

  103. Yamamoto O (1975) Radiation-induced binding of OH-substituted aromatic amino acids, tyrosine and dopa, mutually and with albumin in aqueous solution. Radiat Res 61:251–260

    Article  CAS  Google Scholar 

  104. Yamauchi F, Yamagishi T, Iwabuchi S (1991) Molecular understanding of heat-induced phenomena of soybean protein. Food Rev Intl 7:283–322

    Article  CAS  Google Scholar 

  105. Yang SF, Ku HS, Pratt HK (1967) Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J Biol Chem 242:5274–5280

    CAS  Google Scholar 

  106. Yong SH, Karel M (1978) Reaction of histidine with methyl linoleate: characterization of the histidine degradation products. J Am Oil Chem Soc 55:352–357

    Article  CAS  Google Scholar 

  107. Yong SH, Lau S, Hsieh Y, Karel M (1980) Degradation products of L-tryptophan reacted with peroxidizing methyl linoleate. In: Simic MG, Karel M (eds) Autoxidation in food and biological systems. Phenum Press, New York

    Google Scholar 

  108. Zheng H-G, Yang X-Q, Ahmad I, Min W, Zhu J-H, Yuan D-B (2009) Soybean β-conglycinin constituent subunits: isolation, solubility and amino acid composition. Food Res Int 42:998–1003

    Article  CAS  Google Scholar 

  109. Ziegler GR, Acton JC (1984) Mechanisms of gas formation by proteins of muscle tissue. Food Technol 38(5):77–82

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.W.S. (2018). Proteins. In: Mechanism and Theory in Food Chemistry, Second Edition. Springer, Cham. https://doi.org/10.1007/978-3-319-50766-8_2

Download citation

Publish with us

Policies and ethics