Skip to main content

Laser-Assisted Treatment of Peri-implantitis

  • Chapter
  • First Online:
Implant Aesthetics
  • 2376 Accesses

Abstract

Dental lasers are becoming a useful adjunct in the treatment of ailing and failing implants with their ability to remove diseased tissue, decontaminate implant surfaces, and stimulate growth factors, fibroblast attachment, and collagen deposition. When compared to conventional treatment outcomes, reported clinical improvements resulting from laser-assisted treatment of peri-implantitis include reductions in probing depth, bleeding, suppuration, and implant mobility, with evidence of bone formation and reosseointegration. Future research is expected to optimize clinical efficacy and predictability of laser treatment in the long term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Al-Falaki R, Cronshaw M, Hughes FJ (2014) Treatment outcome following use of the erbium, chromium:yttrium, scandium, gallium, garnet laser in the non-surgical management of peri-implantitis: a case series. Br Dent J 217(8):453–457

    Article  PubMed  Google Scholar 

  • Azzeh MM (2008) Er,Cr:YSGG laser-assisted surgical treatment of peri-implantitis with 1-year reentry and 18-month follow-up. J Periodontol 79(10):2000–2005

    Article  PubMed  Google Scholar 

  • Badran Z, Bories C, Struillou X et al (2011) Er:YAG laser in the clinical management of severe peri-implantitis: a case report. J Oral Implantol 27(Spec No):212–217

    Article  PubMed  Google Scholar 

  • Bassetti M, Schär D, Wicki B et al (2004) Anti-infective therapy of peri-implantitis with adjunctive local drug delivery or photodynamic therapy: 12-month outcomes of a randomized controlled clinical trial. Clin Oral Implants Res 25(3):279–287

    Article  Google Scholar 

  • Block CM, Mayo JA, Evans GH (1992) Effects of the Nd:YAG dental laser on plasma-sprayed and hydroxyapatite-coated titanium dental implants: surface alteration and attempted sterilization. Int J Oral Maxillofac Implants 7(4):441–449

    PubMed  Google Scholar 

  • Boldrini C, de Almeida JM, Fernandes LA et al (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28(1):349–352

    Article  PubMed  Google Scholar 

  • Bombeccari GP, Guzzi G, Gualini F et al (2013) Photodynamic therapy to treat periimplantitis. Implant Dent 22(6):631–638

    Article  PubMed  Google Scholar 

  • Borrajo JLL, Varela LG, Castro GL et al (2004) Diode laser (980 nm) as adjunct to scaling and root planing. Photomed Laser Surg 22(6):509–512

    Article  PubMed  Google Scholar 

  • De Vasconcellos LMR, Barbara MAM, Deco CP et al (2014) Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci 29(2):575–580

    Article  PubMed  Google Scholar 

  • Deppe H, Horch H-H, Neff A (2007) Conventional versus CO2 laser-assisted treatment of peri-implant defects with the concomitant use of pure-phase β-tricalcium phosphate: a 5-year clinical report. Int J Oral Maxillofac Implants 22(1):79–86

    PubMed  Google Scholar 

  • Deppe H, Mücke T, Wagenpfeil S et al (2013) Nonsurgical antimicrobial photodynamic therapy in moderate vs severe peri-implant defects: a clinical pilot study. Quintessence Int 44(8):609–618

    PubMed  Google Scholar 

  • Dörtbudak O, Haas R, Bernhart T et al (2001) Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin Oral Implants Res 12(2):104–108

    Article  PubMed  Google Scholar 

  • Epstein SR (1992) Curettage revisited: laser therapy. Pract Periodontics Aesthet Dent 4(2):27–32

    PubMed  Google Scholar 

  • Flax HD, Radz GM (2004) Closed-flap laser-assisted esthetic dentistry using Er:YSGG technology. Compend Contin Educ Dent 25(8):622 626, 628–630, 632, 634

    PubMed  Google Scholar 

  • Geminiani A, Caton JG, Romanos GE (2011) Temperature increase during CO2 and Er:YAG irradiation on implant surfaces. Implant Dent 20(5):379–382

    PubMed  Google Scholar 

  • Geminiani A, Caton JG, Romanos GE (2012) Temperature change during non-contact diode laser irradiation of implant surfaces. Lasers Med Sci 27(2):339–342

    Article  PubMed  Google Scholar 

  • Giannelli M, Bani D, Tani A et al (2009) In vitro evaluation of the effects of low-intensity Nd:YAG laser irradiation on the inflammatory reaction elicited by bacterial lipopolysaccharide adherent to titanium dental implants. J Periodontol 80(6):977–984

    Article  PubMed  Google Scholar 

  • Giannini R, Vassalli M, Chellini F et al (2006) Neodymium:yttrium aluminum garnet laser irradiation with low pulse energy: a potential tool for the treatment of peri-implant disease. Clin Oral Implants Res 17(6):638–643

    Article  PubMed  Google Scholar 

  • Gold SI, Vilardi MA (1994) Pulsed laser beam effects on gingiva. J Clin Periodontol 21(6):391–396

    Article  PubMed  Google Scholar 

  • Gonçalves F, Zanetti AL, Zanetti RV et al (2010) Effectiveness of 980-nm diode and 1064-nm extra-long-pulse neodymium-doped aluminum garnet lasers in implant disinfection. Photomed Laser Surg 28(2):273–280

    Article  PubMed  Google Scholar 

  • Guzzardella GA, Torricelli P, Nicoli-Aldini N et al (2003) Osseointegration of endosseous ceramic implants after postoperative low-power laser stimulation: an in vivo comparative study. Clin Oral Implants Res 14(2):226–232

    Article  PubMed  Google Scholar 

  • Harris DM, Yessik M (2004) Therapeutic ratio quantifies laser antisepsis: ablation of Porphyromonas gingivalis with dental lasers. Lasers Surg Med 35(3):206–213

    Article  PubMed  Google Scholar 

  • Hauser-Gerspach I, Stübinger S, Meyer J (2010) Bactericidal effects of different laser systems on bacteria adhered to dental implant surfaces: an in vitro study comparing zirconia with titanium. Clin Oral Implants Res 21(3):277–283

    Article  PubMed  Google Scholar 

  • Kamma JJ, Vasdekis VGS, Romanos GE (2009) The effect of diode laser (980 nm) treatment on aggressive periodontitis: evaluation of microbial and clinical parameters. Photomed Laser Surg 27(1):11–19

    Article  PubMed  Google Scholar 

  • Kato T, Kusakari H, Hoshino E (1998) Bactericidal efficacy of carbon dioxide laser against bacteria-contaminated titanium implant and subsequent cellular adhesion to irradiated area. Lasers Surg Med 23(5):299–309

    Article  PubMed  Google Scholar 

  • Khadra M, Kasem N, Lyngstadaas SP et al (2005) Laser therapy accelerates initial attachment and subsequent behavior of human oral fibroblasts cultured on titanium implant material. A scanning electron microscopic and histomorphometric analysis. Clin Oral Implants Res 16(2):168–175

    Article  PubMed  Google Scholar 

  • Kilinc E, Rothrock J, Migliorati E et al (2012) Potential surface alteration effects of laser-assisted periodontal surgery on existing dental restorations. Quintessence Int 43(5):387–395

    PubMed  Google Scholar 

  • Kim S-W, Kwon Y-H, Chung J-H et al (2010) The effect of Er:YAG laser irradiation on the surface microstructure and roughness of hydroxyapatite-coated implant. J Periodontal Implant Sci 40(6):276–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim J-H, Herr Y, Chung J-H et al (2011) The effect of erbium-doped:yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double-acid-etched implants. J Periodontal Implant Sci 41(5):234–241

    Article  PubMed  PubMed Central  Google Scholar 

  • Knappe V, Frank F, Rohde E (2004) Principles of lasers and biophotonic effects. Photomed Laser Surg 22(5):411–417

    Article  PubMed  Google Scholar 

  • Kreisler M, Kohnen W, Marinello C et al (2002) Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 73(11):1292–1298

    Article  PubMed  Google Scholar 

  • Kreisler M, Al Haj H, d’Hoedt B (2003) Temperature changes induced by 809-nm GaAlAs laser at the implant-bone interface during simulated surface decontamination. Clin Oral Implants Res 14(1):91–96

    Article  PubMed  Google Scholar 

  • Kutkut A, Andreana S, Al-Sabbagh M (2011) Treatment of periimplant infection in the posterior maxilla, with 810-nm diode laser decontamination of the implant surfaces: a case report. J Laser Dent 19(3):270–275

    Google Scholar 

  • Lee J-H, Heo S-J, Koak J-Y et al (2008) Cellular responses on anodized titanium discs after laser irradiation. Lasers Surg Med 40(10):738–742

    Article  PubMed  Google Scholar 

  • Lee J-H, Kwon Y-H, Herr Y et al (2011) Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants. J Periodontal Implant Sci 41(3):135–142

    Article  PubMed  PubMed Central  Google Scholar 

  • Leja C, Geminiani A, Caton J et al (2013) Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study. Lasers Med Sci 28(6):1435–1440

    Article  PubMed  Google Scholar 

  • Marotti J, Tortamano P, Cai S et al (2013) Decontamination of dental implant surfaces by means of photodynamic therapy. Lasers Med Sci 28(1):303–309 Erratum in: (2013) Lasers Med Sci 28(3):1047

    Article  PubMed  Google Scholar 

  • Massotti FP, Gomes FV, Mayer L et al (2015) Histomorphometric assessment of the influence of low-level laser therapy on peri-implant tissue healing in the rabbit mandible. Photomed Laser Surg 33(3):123–128

    Article  PubMed  PubMed Central  Google Scholar 

  • Monzavi A, Shahabi S, Fekrazad R et al (2014) Implant surface temperature changes during Er:YAG laser irradiation with different cooling systems. J Dent (Tehran) 11(2):210–215

    Google Scholar 

  • Moritz A, Schoop U, Goharkhay K et al (1998) Treatment of periodontal pockets with a diode laser. Lasers Surg Med 22(5):302–311

    Article  PubMed  Google Scholar 

  • Mouhyi J, Sennerby L, Nammour S et al (1999) Temperature increases during surface decontamination of titanium implants using CO2 laser. Clin Oral Implants Res 10(1):54–61

    Article  PubMed  Google Scholar 

  • Naka T, Yokose S (2012) Application of laser-induced bone therapy by carbon dioxide laser irradiation in implant therapy. Int J Dent 409496:1–8

    Article  Google Scholar 

  • Nevins M, Nevins ML, Yamamoto A et al (2014) Use of Er:YAG laser to decontaminate infected dental implant surface in preparation for reestablishment of bone-to-implant contact. Int J Periodontics Restor Dent 34(4):461–466

    Article  Google Scholar 

  • Nicholson D, Blodgett K, Braga C et al (2014) Pulsed Nd:YAG laser treatment for failing implants due to peri-implantitis. In: Rechmann P, Fried D (eds) Lasers in dentistry XX, San Francisco, Calif., February 2, 2014, vol 8929. Society of Photo-Optical Instrumentation Engineers, Bellingham, pp 89290H-1–89290H-14

    Google Scholar 

  • Omasa S, Motoyoshi M, Arai Y et al (2012) Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model. Photomed Laser Surg 30(5):255–261

    Article  PubMed  Google Scholar 

  • Pang P, Andreana S, Aoki A et al (2010) Laser energy in oral soft tissue applications. J Laser Dent 18(3):123–131

    Google Scholar 

  • Papadopoulos CA, Vouros I, Menexes G et al (2015) The utilization of a diode laser in the surgical treatment of peri-implantitis. A randomized clinical trial. Clin Oral Investig. doi:10.1007/s00784-014-1397-9

    Article  PubMed  Google Scholar 

  • Persson LF, Mouhyi J, Berglundh T et al (2004) Carbon dioxide laser and hydrogen peroxide conditioning in the treatment of periimplantitis: an experimental study in the dog. Clin Implant Dent Relat Res 6(4):230–238

    Article  PubMed  Google Scholar 

  • Pick RM, Pecaro BC, Silberman CJ (1985) The laser gingivectomy. The use of the CO2 laser for the removal of phenytoin hyperplasia. J Periodontol 56(8):492–496

    Article  PubMed  Google Scholar 

  • Renvert S, Lindahi C, Roos JansÃ¥ker A-M et al (2011) Treatment of peri-implantitis using an Er:YAG laser or an air-abrasive device: a randomized clinical trial. J Clin Periodontol 38(1):65–73

    Article  PubMed  Google Scholar 

  • Romanos G (2006) 980-nm diode laser-assisted treatment of peri-implantitis. J Acad Laser Dent 14(1):13–15

    Google Scholar 

  • Romanos GE, Nentwig GH (2008) Regenerative therapy of deep peri-implant infrabony defects after CO2 laser implant surface decontamination. Int J Periodontics Restor Dent 28(3):245–255

    Google Scholar 

  • Romanos GE, Everts H, Nentwig GH (2000) Effects of diode and Nd:YAG laser irradiation on titanium discs: a scanning electron microscope examination. J Periodontol 71(5):810–815

    Article  PubMed  Google Scholar 

  • Romanos G, Ko H-H, Froum S et al (2009) The use of CO2 laser in the treatment of peri-implantitis. Photomed Laser Surg 27(3):381–386

    Article  PubMed  Google Scholar 

  • Roncati M, Lucchese A, Carinci F (2013) Non-surgical treatment of peri-implantitis with the adjunctive use of an 810-nm diode laser. J Indian Soc Periodontol 17(6):812–815

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell AD (2003) Lethal effects of heat on bacterial physiology and structure. Sci Prog 86(Pt 1–2):115–137

    Article  PubMed  Google Scholar 

  • Schwarz F, Berakdar M, Georg T et al (2003) Clinical evaluation of an Er:YAG laser combined with scaling and root planing for non-surgical periodontal treatment. A controlled, prospective clinical study. J Clin Periodontol 30(1):26–34

    Article  PubMed  Google Scholar 

  • Schwarz F, Sculean A, Rothamel D et al (2005) Clinical evaluation of an Er:YAG laser for nonsurgical treatment of peri-implantitis: a pilot study. Clin Oral Implants Res 16(1):44–52

    Article  PubMed  Google Scholar 

  • Schwarz F, Nuesry E, Bieling K et al (2006a) Influence of an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser on the reestablishment of the biocompatibility of contaminated titanium implant surfaces. J Periodontol 77(11):1820–1827

    Article  PubMed  Google Scholar 

  • Schwarz F, Bieling K, Nuesry E et al (2006b) Clinical and histological healing pattern of peri-implantitis lesions following non-surgical treatment with an Er:YAG laser. Lasers Surg Med 38(7):663–671

    Article  PubMed  Google Scholar 

  • Schwarz F, Hegewald A, John G et al (2013) Four-year follow-up of combined surgical therapy of advanced peri-implantitis evaluating two methods of surface decontamination. J Clin Periodontol 40(10):962–967

    Article  PubMed  Google Scholar 

  • Shafir R, Slutzki S, Bornstein LA (1977) Excision of buccal hemangioma by carbon dioxide laser beam. Oral Surg Oral Med Oral Pathol 4(3):347–350

    Article  Google Scholar 

  • Shin S-I, Min H-K, Park B-H et al (2011) The effect of Er:YAG laser irradiation on the scanning electron microscopic structure and surface roughness of various implant surfaces: an in vitro study. Lasers Med Sci 26(6):767–776

    Article  PubMed  Google Scholar 

  • Shin S-I, Lee E-K, Kim J-H et al (2013) The effect of Er:YAG laser irradiation on hydroxyapatite-coated implants and fluoride-modified TiO2-blasted implant surfaces: a microstructural analysis. Lasers Med Sci 28(3):823–831

    Article  PubMed  Google Scholar 

  • Strong MS, Vaughan CE, Healy GB et al (1979) Transoral management of localized carcinoma of the oral cavity using the CO2 laser. Laryngoscope 89(6 Pt 1):897–905

    PubMed  Google Scholar 

  • Stübinger S, Homann F, Etter C et al (2008) Effect of Er:YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants. Lasers Surg Med 40(3):223–228

    Article  PubMed  Google Scholar 

  • Stübinger S, Etter C, Miskiewicz M et al (2010) Surface alterations of polished and sandblasted and acid-etched titanium implants after Er:YAG, carbon dioxide, and diode laser irradiation. Int J Oral Maxillofac Implants 25(1):104–111

    PubMed  Google Scholar 

  • Takasaki AA, Aoki A, Mizutani K et al (2007) Er:YAG laser therapy for peri-implant infection: a histological study. Lasers Med Sci 22(3):143–157

    Article  PubMed  Google Scholar 

  • Watanabe H, Ishikawa I, Suzuki M et al (1996) Clinical assessments of the erbium:YAG laser for soft tissue surgery and scaling. J Clin Laser Med Surg 14(2):67–75

    Article  PubMed  Google Scholar 

  • White JM, Goodis HE, Rose CL (1991) Use of the pulsed Nd:YAG laser for intraoral soft tissue surgery. Lasers Surg Med 11(5):455–461

    Article  PubMed  Google Scholar 

  • Wilcox CW, Wilwerding TM, Watson P et al (2001) Use of electrosurgery and lasers in the presence of dental implants. Int J Oral Maxillofac Implants 16(4):578–582

    PubMed  Google Scholar 

  • Wooten CA, Sullivan SM, Surpure S (1999) Heat generation by superpulsed CO2 lasers on plasma-sprayed titanium implants: an in vitro study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88(5):544–548

    Article  PubMed  Google Scholar 

  • Yamamoto A, Tanabe T (2013) Treatment of peri-implantitis around TiUnite-surface implants using Er:YAG laser microexplosions. Int J Periodontics Restor Dent 33(1):21–29

    Article  Google Scholar 

  • Yu W, Naim JO, Lanzaframe RJ (1997) Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med 20(1):56–63

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Marcus DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Marcus, E.A. (2017). Laser-Assisted Treatment of Peri-implantitis. In: Karateew, E. (eds) Implant Aesthetics. Springer, Cham. https://doi.org/10.1007/978-3-319-50706-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50706-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50704-0

  • Online ISBN: 978-3-319-50706-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics