Skip to main content

Modulation in Molecular Communications: A Look on Methodologies

  • Chapter
  • First Online:
Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Abstract

Nanonetworking is a recently proposed paradigm that aims to achieve collaboration between nanomachines to carry out complex tasks. Molecular communications has been the most vibrant area of research for nanonetworking, mostly because of its feasibility and existence of communication schemes similar to molecular communications in nature. In molecular communications, two nanomachines communicate with each other via propagation of molecules from the transmitter to the receiver nanomachines through the medium they reside in. How and where to encode the message, i.e. modulation, plays a key role in molecular communications since it greatly affects the communication performance at nanoscale. To this end, in this paper, we examine the landscape of modulation in molecular communications, categorize the modulation schemes in molecular communications by methodology and discuss how convenient they are in terms of synchronization requirements in a nanoscale environment and their biocompatibility for applications inside human body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akyildiz IF, Brunetti F, Blazquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52(12):2260–2279

    Article  Google Scholar 

  2. Akyildiz IF, Jornet JM, Pierobon M (2010) Propagation models for nanocommunication networks. In: Proceedings of EUCAP 2010, Fourth European conference on antennas and propagation (invited paper), Barcelona, Spain, April 2010

    Google Scholar 

  3. Guney A, Atakan B, Akan OB (2012) Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Trans Mob Comput 11(3):353–366

    Google Scholar 

  4. Suda T, Moore M, Nakano T, Egashira R, Enomoto A, Hiyama S, Moritani Y (2005) Exploratory research on molecular communication between nanomachines. In: Genetic and evolutionary computation conference (GECCO), Late breaking papers

    Google Scholar 

  5. Hiyama S, Moritani Y (2010) Molecular communication: harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun Netw 1(1):20–30

    Article  Google Scholar 

  6. Hiyama S, Moritani Y, Suda T, Egashira R, Enomoto A, Moore M, Nakano T (2006) Molecular communication. J Inst Electron Inf Commun Eng 89(2):162

    Google Scholar 

  7. Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: opportunities and challenges. IEEE Trans NanoBiosci 11(2):135–148

    Article  Google Scholar 

  8. Krishnaswamy B, Henegar C, Bardill JP, Russakow D, Holst GL, Hammer BK, Forest CR, Sivakumar R (2013) Time-elapse communication: bacterial communication on a microfluidic chip. IEEE Trans Commun 61(12):5139–5151

    Google Scholar 

  9. Farsad N, Guo W, Eckford AW (2013) Tabletop molecular communication: text messages through chemical signals. PloS One 8(12):e82935

    Article  Google Scholar 

  10. Nakano T, Suda T, Moore M, Egashira R, Enomoto A, Arima K (2005) Molecular communication for nanomachines using intercellular calcium signaling. In: Proceedings of IEEE conference on nanotechnology (IEEE-NANO 2005), Nagoya, Japan, July 2005

    Google Scholar 

  11. Berridge MJ (1997) The AM and FM of calcium signalling. Nature 386:759–760

    Google Scholar 

  12. Kuran MS, Tugcu T, Edis BO (2012) Calcium signaling: overview and research directions of a molecular communication paradigm. Wirel Commun IEEE 19(5):20–27

    Google Scholar 

  13. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54(7):71625

    Article  Google Scholar 

  14. Atakan B, Akan OB (2007) An information theoretical approach for molecular communication. In: Proceedings of IEEE/ACM BIONETICS 2007, Budapest, Hungary, December, 2007

    Google Scholar 

  15. Nakano T, Okaie Y, Liu J-Q (2012) Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Commun Lett 16(6):797–800

    Article  Google Scholar 

  16. Garralda N, Llatser I, Cabellos-Aparicio A, Pierobon M (2011) Simulation-based evaluation of the diffusion-based physical channel in molecular nanonetworks. In: 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE

    Google Scholar 

  17. Kuran MS, Yilmaz HB, Tugcu T, Akyildiz IF (2011) Modulation techniques for communication via diffusion in nanonetworks. In: 2011 IEEE international conference on communications (ICC). IEEE

    Google Scholar 

  18. Mahfuz MU, Makrakis D, Mouftah H (2010) Spatiotemporal distribution and modulation schemes for concentration-encoded medium-to-long range molecular communication. In: 2010 25th biennial symposium on communications (QBSC). IEEE

    Google Scholar 

  19. Gine LP, Akyildiz IF (2009) Molecular communication options for long range nanonetworks. Comput Netw 53(16):2753–2766

    Google Scholar 

  20. Unluturk BD, Pehlivanoglu EB, Akan OB (2013) Molecular channel model with multiple bit carrying molecules. In: 2013 first international Black Sea conference on communications and networking (BlackSeaCom). IEEE

    Google Scholar 

  21. Freitas RA (1999) Nanomedicine, vol. I: basic capabilities. Landes Bioscience, Georgetown, TX

    Google Scholar 

  22. Kim N-R, Chae C-B (2012) Novel modulation techniques using isomers as messenger molecules for molecular communication via diffusion. In: 2012 IEEE international conference on communications (ICC). IEEE

    Google Scholar 

  23. Hsieh Y-P, Shih P-J, Lee Y-C, Yeh P-C, Chen K-C (2012) An asynchronous communication scheme for molecular communication. In: 2012 IEEE international conference on communications (ICC). IEEE

    Google Scholar 

  24. Atakan B, Galmes S, Akan OB (2012) Nanoscale communication with molecular arrays in nanonetworks. IEEE Trans NanoBiosci 11(2):149–160

    Article  Google Scholar 

  25. Arjmandi H, Gohari A, Kenari MN, Bateni F (2013) Diffusion-based nanonetworking: a new modulation technique and performance analysis. IEEE Commun Lett 17(4):645–648

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ecehan Berk Pehlivanoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pehlivanoglu, E.B., Unluturk, B.D., Akan, O.B. (2017). Modulation in Molecular Communications: A Look on Methodologies. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics