Skip to main content

Quantifying Robustness in Biological Networks Using NS-2

  • Chapter
  • First Online:
Modeling, Methodologies and Tools for Molecular and Nano-scale Communications

Abstract

Biological networks are known to be robust despite signal disruptions such as gene failures and perturbations. Extensive research is currently under way to explore biological networks and identify the underlying principles of their robustness. Structural properties such as power-law degree distribution and motif abundance have been attributed for robust performance of biological networks. Yet, little has been done so far to quantify such biological robustness. We propose a platform to quantify biological robustness using network simulator (NS-2) by careful mapping of biological properties at the gene level to that of wireless sensor networks derived using the topology of gene regulatory networks found in different organisms. A Support Vector Machine (SVM) learning model is used to measure the correlation of packet transmission rates in such sensor networks. These sensor networks contain important topological features of the underlying biological network, such as motif abundance, node/gene coverage, and transcription-factor network density, which we use to map the SVM features. Finally, a case study is presented to evaluate the NS-2 performance of two gene regulatory networks, obtained from the bacterium Escherichia coli and the baker’s yeast Sachharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    p(K) is the probability to find a node of degree K in a network that follows the power law distribution \(p(K) \sim K^{-\gamma }\).

  2. 2.

    In a biological context, self-edges for a gene refers to auto-regulation of expression.

  3. 3.

    Algorithm proposed by [19] is explained in Sect. 3.2.1.

References

  1. Barabáasi, A-L, Albert (1999) Emergence of scaling in random networks. In: Science 286.5439, pp 509–512

    Google Scholar 

  2. Belle A, Tanay A, Bitincka L, Shamir R, OShea EK (2006) Quantification of protein half-lives in the budding yeast proteome. In: Proceedings of the National Academy of Sciences 103.35, pp 13004–13009. doi:10.1073/pnas.0605420103. eprint: http://www.pnas.org/content/103/35/13004.full.pdf+html. url: http://www.pnas.org/content/103/35/13004.abstract

  3. Chang Chih-Chung, Lin Chih-Jen (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):27

    Google Scholar 

  4. Chung, F, Lu L, Dewey TG, Galas DJ (2003) Duplication models for biological networks. J Comput Biol 10(5):677–687

    Google Scholar 

  5. Collins, FS, Morgan M, Patrinos A (2003) The human genome project: lessons from large-scale biology. Science 300(5617):286–290

    Google Scholar 

  6. Ghosh Preetam, Ghosh Samik, Basu Kalyan, Das Sajal K, Zhang Chaoyang (2010) Discrete di usion models to study the e ects of Mg2+ con- centration on the PhoPQ signal transduction system. BMC Genom 11(Suppl 3):S3

    Article  Google Scholar 

  7. Ghosh S, Ghosh P, Basu K, Das SK, S Daefler S (2011) A discrete event based stochastic simulation platform for in silico study of molecular-level cellular dynamics. J Biotechnol Biomater 6:2

    Google Scholar 

  8. Gul E, Atakan B, Akan OB (2010) NanoNS: a nanoscale network simulator framework for molecular communications. Nano Commun Netw 1(2):138–156

    Google Scholar 

  9. Han B, Leblet J, Simon G (2009) Query range problem in wireless sensor networks. Commun Lett IEEE 13(1):55–57. doi:10.1109/LCOMM.2009.081546. Institute, Information-Sciences. NS-2. http://isi.edu.nsnam/ns

  10. Kamapantula BK, Abdelzaher A, Ghosh P, Mayo M, Perkins EJ, Das SK (2012a) Leveraging the robustness of genetic networks: a case study on bio-inspired wireless sensor network topologies. J Amb Intell Hum Comput 1–17

    Google Scholar 

  11. Kamapantula BK, Abdelzaher A, Ghosh P, Mayo M, Perkins E, Das SK (2012b) Performance of wireless sensor topologies inspired by E. coli genetic networks. In: 2012 IEEE International conference on Pervasive Computing and Communications Workshops (PERCOM Workshops). IEEE, pp 302–307

    Google Scholar 

  12. Kitano H (2002) Computational systems biology. Nature 420(6912):206–210

    Google Scholar 

  13. Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(1)

    Google Scholar 

  14. Krapivsky Paul L, Redner Sidney, Leyvraz Francois (2000) Connectivity of growing random networks. Phys Rev Lett 85(21):4629

    Article  Google Scholar 

  15. Latora V, Marchiori M (2004) The architecture of complex systems. Oxford UP

    Google Scholar 

  16. Lunshof Jeantine E, Bobe Jason, Aach John, Angrist Misha, Thakuria Joseph V, Vorhaus Daniel B, Hoehe Margret R, Church George M (2010) Personal genomes in progress: from the human genome project to the personal genome project. Dialog Clin Neurosci 12(1):47

    Google Scholar 

  17. Malak D, Ozgur BA (2012) Molecular communication nanonetworks inside human body. Nano Commun Netw 3(1):19–35

    Google Scholar 

  18. Mangan S, Uri A (2003) Structure and function of the feed-forward loop network motif. In: Proceedings of the National Academy of Sciences, vol 100, no. 21, pp 11980–11985

    Google Scholar 

  19. Mayo M, Abdelzaher A, Perkins EJ, Ghosh P (2012) Motif participation by genes in E. coli transcriptional networks. Front Physiol 3(357). ISSN: 1664-042X. doi:10.3389/fphys.2012.00357. http://www.frontiersin.org/fractal_physiology/10.3389/fphys.2012.00357/abstract

  20. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Google Scholar 

  21. Nakano T, Moore MJ, Wei F, Vasilakos AV, Shuai J (2012) Molecular communication and networking: Opportunities and challenges. NanoBiosci IEEE Trans 11(2):135–148

    Google Scholar 

  22. Ng Alex KS, Efstathiou Janet (2006) Structural robustness of complex networks. Phys Rev 3:175–188

    Google Scholar 

  23. NIH (2013) Cells and DNA—Genetics Home Reference. http://ghr.nlm.nih.gov/handbook/basics?show=all

  24. Piro G, Grieco LA, Boggia G, Camarda P, DEE-Dip di Elettrotecnica (2013) Simulating wireless nano sensor networks in the NS-3 platform. In: Proceedings of Workshop on Performance Analysis and Enhancement of Wireless Networks, PAEWN, Barcelona, Spain

    Google Scholar 

  25. Python, Software Foundation (1991) Core Python Programming. http://www.python.org

  26. Samoilov MS, Arkin AP (2006) Deviant effects in molecular reaction pathways. Nat Biotech 24(10):1235–1240

    Google Scholar 

  27. Schaffter T, Marbach D, Floreano D (2011) GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16):2263–2270

    Google Scholar 

  28. Vázquez A, Flammini A, Maritan A, Vespignani A (2002) Modeling of protein interaction networks. Complexus 1(1):38–44

    Google Scholar 

  29. Zeigler BP, Praehofer H, Kim TG et al (1976) Theory of modeling and simulation, vol 19. John Wiley, New York

    Google Scholar 

  30. Zeng X, Bagrodia R, Gerla M (1998) GloMoSim: a library for parallel simulation of large-scale wireless networks. In: Twelfth Workshop on Parallel and Distributed Simulation, 1998. PADS 98. Proceedings. IEEE, pp. 154–161

    Google Scholar 

Download references

Acknowledgements

This work is supported by NSF and the US Army’s Environmental Quality and Installations 6.1 basic research program. The Chief of Engineers approved this material for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu K. Kamapantula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kamapantula, B.K., Abdelzaher, A.F., Mayo, M., Perkins, E.J., Das, S.K., Ghosh, P. (2017). Quantifying Robustness in Biological Networks Using NS-2. In: Suzuki, J., Nakano, T., Moore, M. (eds) Modeling, Methodologies and Tools for Molecular and Nano-scale Communications. Modeling and Optimization in Science and Technologies, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-50688-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50688-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50686-9

  • Online ISBN: 978-3-319-50688-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics