Skip to main content

Part of the book series: Interaction of Mechanics and Mathematics ((IMM))

  • 2622 Accesses

Abstract

We start this book with arguably the simplest theory of a deformable elastic body - that of a string or, as it is also known, a one-dimensional continuum. Our motivation is the development of a theory that can accommodate a range of effects such as gravity, spatial discontinuities in velocity, applied forces which are concentrated at a point, large displacements and stretches, and nonlinear material behavior. This theory is used to develop models for a variety of problems ranging from chains to conveyor belts and bungee cords to hanging cables. Initially a wide range of kinematical results are established. Then, the balance laws are presented and a methodology for using these laws to establish the equations governing the motions of both inextensible and elastic strings is presented.

“In a theory ideally worked out, the progress which we should be able to trace would be, in other particulars, one from less to more, but we may say that, in regard to the assumed physical principles, progress consists in passing from more to less.”

A. E. H. Love [213, Page 1] commenting on the historical development of theories for continuous media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For additional background on Euler angles and other parameterizations of a rotation, the interested reader is referred to the authoritative review [321] by Malcolm Shuster (1943–2012).

  2. 2.

    It is an interesting exercise to perform this integration for a space curve where \(\boldsymbol{\omega }_{\text{SF}}\) is constant. As can be seen from the developments in Section 1.3.4, the resulting curve will either be a circle or a circular helix.

  3. 3.

    The interested reader is referred to [252, 253, 267] for further details and references.

  4. 4.

    The representation for a rotation tensor Q in terms of the angle of rotation and axis of rotation is known as Euler’s representation and can be found in Eqn. (5.14) on Page 223.

  5. 5.

    As first shown by Green and Rivlin [139] some fifty years ago, superposed rigid body motions can be exploited to furnish elegant formulations of the balance laws. The paper [139] has influenced numerous researchers seeking to develop balance laws (governing equations) for deformable media.

  6. 6.

    See, for example, [56, 58, 201, 279, 316, 342, 343].

  7. 7.

    Details on the continuity and boundedness assumptions on these fields can be inferred from our discussion following (1.68).

  8. 8.

    Eshelby’s collected works were recently assembled and published in [104]. The recent collection [332] of articles by researchers in this area provides an interesting panorama and a variety of perspectives on the legacy of Eshelby’s work.

  9. 9.

    We refer the reader to the example considered in Section 1.8, Exercises 1.7 and 2.7, and Section 8.8.2 of Chapter 8 for further details on these correspondences.

  10. 10.

    These identities have counterparts in the continuum mechanics of a three-dimensional body that can be found in the papers [230, 263]. The counterpart to Eqn. (1.88) is also discussed in Section 8.8.2 of Chapter 8

  11. 11.

    This identity was first established in [264]. An outline of the derivation of the identity (1.88) is presented in Exercises 1.3 and 1.4.

  12. 12.

    This parallels the methodology used in establishing constitutive relations for a three-dimensional continuum. For the reader’s convenience, a rapid summary of this procedure is presented in Section 8.6 of Chapter 8 Additional developments are presented in Exercise 8.4.

  13. 13.

    Restrictions of this type are common in continuum mechanics and the interested reader is referred to [351, Section 87] for a review of these restrictions. In the context of one-dimensional continua, Antman’s masterful discussion in [12, Chapter III, Section 3] has greatly influenced our exposition.

  14. 14.

    For further details on the Legendre transformation, we refer the reader to the lucid discussion of this transformation in Lanczos [195].

  15. 15.

    For an inextensible string μ = 1 and, after computing \(\dot{\mu }\), one finds that r ⋅ v  = 0.

  16. 16.

    We follow Casey and Carroll [49] and do not presume that p  ⊥  = p. Related invariance requirements for F γ and \(\varPhi _{\text{E}_{\gamma }}\) are discussed in [277].

  17. 17.

    A detailed description of this procedure can be found in Section 2.3.2 of Chapter 2

  18. 18.

    Alternatively, we could use the Leibnitz rule and the constancy of C to establish the sought-after expression.

  19. 19.

    Observe that Eqn. (1.129) is simply a restatement of the identity \(\varPhi _{\text{E}_{\gamma }} = \mathsf{B}_{\gamma }\dot{\gamma } + \mathbf{F}_{\gamma } \cdot \mathbf{v}_{\gamma }\) (where F γ  = 0) applied to the present problem.

  20. 20.

    The strain energy function \(\rho _{0}\psi = \frac{EA} {2} \left (\mu -1\right )^{2}\) is insufficient to examine the phase transformation. Instead, what is required is a strain energy function such as the one shown in Figure 2.5 (cf. Eqn. (2.10)). The computation of C and \(\mathsf{B}_{\ell_{1}}\) for this strain energy function follows our previous developments, but the algebraic details are more complicated and are presented in Exercise 2.7.

  21. 21.

    We refer the reader to Eqn. (1.144) in Exercise 1.7 and Abeyaratne and Knowles [5, Chapter 2].

References

  1. Abeyaratne, R., Knowles, J.K.: Kinetic relations and the propagation of phase boundaries in solids. Archive for Rational Mechanics and Analysis 114 (2), 119–154 (1991). URL http://dx.doi.org/10.1007/BF00375400

  2. Abeyaratne, R., Knowles, J.K.: Nucleation, kinetics and admissibility criteria for propagating phase boundaries. In: R. Fosdick, E. Dunn, H. Slemrod (eds.) Shock induced transitions and phase structures in general media, IMA Volumes in Mathematics and its Applications, vol. 52, pp. 1–33. Springer-Verlag, New York (1993). URL http://dx.doi.org/10.1007/978-1-4613-8348-2_1

  3. Abeyaratne, R., Knowles, J.K.: Evolution of Phase Transitions: A Continuum Theory. Cambridge University Press, Cambridge (2006). URL http://dx.doi.org/10.1017/CBO9780511547133

  4. Antman, S.S.: Nonlinear Problems of Elasticity, Applied Mathematical Sciences, vol. 107, second edn. Springer-Verlag, New York (2005)

    Google Scholar 

  5. Burridge, R., Keller, J.B.: Peeling, slipping and cracking - Some one-dimensional free-boundary problems in mechanics. SIAM Review 20 (1), 31–61 (1978). URL http://dx.doi.org/10.1137/1020003

  6. Casey, J., Carroll, M.M.: Discussion of “A treatment of internally constrained materials” by J. Casey. ASME Journal of Applied Mechanics 63 (1), 240 (1996). URL http://dx.doi.org/10.1115/1.2787205

  7. Chadwick, P.: Continuum Mechanics, second corrected and enlarged edn. Dover Publications, New York (1999)

    Google Scholar 

  8. Chen, J.S.: Natural frequencies and stability of an axially-travelling string in contact with a stationary load system. ASME Journal of Vibration and Acoustics 119 (2), 152–157 (1997). URL http://dx.doi.org/10.1115/1.2889696

  9. Chen, L.Q.: Analysis and control of transverse vibrations of axially moving strings. ASME Applied Mechanics Reviews 58 (2), 91–116 (2005). URL http://dx.doi.org/10.1115/1.1849169

  10. Cheng, S.P., Perkins, N.C.: The vibration and stability of a friction-guided, translating string. Journal of Sound and Vibration 144 (2), 281–292 (1991). URL http://dx.doi.org/10.1016/0022-460X(91)90749-A

  11. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, fourth edn. Springer-Verlag, Berlin (2016). URL http://dx.doi.org/10.1007/978-3-662-49451-6

  12. Ericksen, J.L.: Equilibrium of bars. Journal of Elasticity 5 (3), 191–201 (1975). URL http://dx.doi.org/10.1007/BF00126984

  13. Eshelby, J.D.: The force on an elastic singularity. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 244, 84–112 (1951). URL http://dx.doi.org/10.1098/rsta.1951.0016

  14. Eshelby, J.D.: The continuum theory of lattice defects. In: F. Seitz, D. Turnbull (eds.) Solid State Physics, vol. 3, pp. 79–144. Academic Press (1956). URL http://dx.doi.org/10.1016/S0081-1947(08)60132-0

  15. Eshelby, J.D.: Energy relations and the energy-momentum tensor in continuum mechanics. In: J.M. Ball, D. Kinderlehrer, P. Podio-Guidugli (eds.) Fundamental contributions to the continuum theory of evolving phase interfaces in solids, pp. 82–119. Springer-Verlag, Berlin (1999). URL http://dx.doi.org/10.1007/978-3-642-59938-5_5

  16. Eshelby, J.D.: Collected Works of J. D. Eshelby. The Mechanics of Defects and Inhomogeneities. Springer-Verlag, Berlin (2006). Edited by X. Markenscoff and A. Gupta.

    Google Scholar 

  17. Estrada, R., Kanwal, R.P.: Nonclassical derivation of the transport theorems for wave fronts. Journal of Mathematical Analysis and Applications 159 (1), 290–297 (1991). URL http://dx.doi.org/10.1016/0022-247X(91)90236-S

  18. Faruk Senan, N.A., O’Reilly, O.M., Tresierras, T.N.: Modeling the growth and branching of plants: A simple rod-based model. J. Mech. Phys. Solids 56 (10), 3021–3036 (2008). URL http://dx.doi.org/10.1016/j.jmps.2008.06.005

  19. Gavrilov, S.: Nonlinear investigation of the possibility to exceed the critical speed by a load on a string. Acta Mechanica 154 (1), 47–60 (2002). URL http://dx.doi.org/10.1007/BF01170698

  20. Green, A.E., Naghdi, P.M.: A derivation of jump condition for entropy in thermomechanics. Journal of Elasticity 8 (2), 119–182 (1978). URL http://dx.doi.org/10.1007/BF00052481

  21. Green, A.E., Naghdi, P.M.: On thermal effects in the theory of rods. International Journal of Solids and Structures 15 (11), 829–853 (1979). URL http://dx.doi.org/10.1016/0020-7683(79)90053-2

  22. Green, A.E., Naghdi, P.M.: A direct theory of viscous fluid flow in pipes. I: Basic general developments. Philosophical Transactions of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences 342 (1666), 525–542 (1993). URL http://dx.doi.org/10.1098/rsta.1993.0031

  23. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods. I Derivations from three-dimensional equations. Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences 337 (1611), 451–483 (1974). URL http://dx.doi.org/10.1098/rspa.1974.0061

  24. Green, A.E., Naghdi, P.M., Wenner, M.L.: On the theory of rods. II Developments by direct approach. Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences 337 (1611), 485–507 (1974). URL http://dx.doi.org/10.1098/rspa.1974.0062

  25. Green, A.E., Rivlin, R.S.: On Cauchy’s equations of motion. Zeitschrift für Angewandte Mathematik und Physik. ZAMP. Journal of Applied Mathematics and Physics. Journal de Mathématiques et de Physique Appliquées 15 (3), 290–292 (1964). URL http://dx.doi.org/10.1007/BF01607019

  26. Gurtin, M.E.: The nature of configurational forces. Archive for Rational Mechanics and Analysis 131 (1), 67–100 (1995). URL http://dx.doi.org/10.1007/BF00386071

  27. Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics, Applied Mathematical Sciences, vol. 137. Springer-Verlag, New York (2000)

    Google Scholar 

  28. Heidug, W., Lehner, F.K.: Thermodynamics of coherent phase transformations in nonhydrostatically stressed solids. Pure and Applied Geophysics 123 (1), 91–98 (1985). URL http://dx.doi.org/10.1007/BF00877051

  29. Kienzler, R., Herrmann, G.: Mechanics in Material Space: With Applications to Defect and Fracture Mechanics. Springer-Verlag, Berlin (2000)

    Book  MATH  Google Scholar 

  30. Kienzler, R.R., Herrmann, G.G.: On material forces in elementary beam theory. ASME Journal of Applied Mechanics 53 (3), 561–564 (1986). URL http://dx.doi.org/10.1115/1.3171811

  31. Kreyszig, E.: Differential Geometry, Revised and reprinted edn. Toronto University Press, Toronto (1964)

    MATH  Google Scholar 

  32. Lanczos, C.: The Variational Principles of Mechanics, fourth edn. University of Toronto Press, Toronto (1970)

    Google Scholar 

  33. Lee, S.Y., Mote, Jr., C.D.: Travelling wave dynamics in a translating string coupled to stationary constraints: Energy transfer and mode localization. Journal of Sound and Vibration 212 (1), 1–22 (1998). URL http://dx.doi.org/10.1006/jsvi.1997.1285

  34. LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2002). URL http://dx.doi.org/10.1007/978-3-0348-8150-0

  35. LeFloch, P.G., Mohammadian, M.: Why many theories of shock waves are necessary: Kinetic functions, equivalent equations, and fourth-order models. Journal of Computational Physics 227 (8), 4162–4189 (2008). URL http://dx.doi.org/10.1016/j.jcp.2007.12.026

  36. Liepmann, H.W., Roshko, A.: Elements of Gas Dynamics. John Wiley & Sons, Inc., New York (1957)

    Google Scholar 

  37. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity, fourth edn. Cambridge University Press, Cambridge (1927)

    Google Scholar 

  38. Marshall, J.S., Naghdi, P.M.: A thermodynamical theory of turbulence. I. Basic developments. Philosophical Transactions of the Royal Society of London. Series A. Mathematical and Physical Sciences 327 (1595), 415–448 (1989). URL http://dx.doi.org/10.1098/rsta.1989.0001

  39. Maugin, G.A.: Material forces: concepts and applications. ASME Applied Mechanics Reviews 48 (5), 213–245 (1995). URL http://dx.doi.org/10.1115/1.3005101

  40. Maugin, G.A.: Configurational forces: Thermomechanics, physics, mathematics, and numerics. CRC Series: Modern Mechanics and Mathematics. CRC Press, Boca Raton, FL (2011)

    MATH  Google Scholar 

  41. Nordenholz, T.R., O’Reilly, O.M.: On steady motions of an elastic rod with application to contact problems. International Journal of Solids and Structures 34 (9), 1123–1143 & 3211–3212 (1997). URL http://dx.doi.org/10.1016/S0020-7683(96)00054-6

  42. Novelia, A., O’Reilly, O.M.: On geodesics of the rotation group SO(3). Regular and Chaotic Dynamics 20 (6), 729–738 (2015). URL http://dx.doi.org/10.1134/S1560354715060088

  43. Novelia, A., O’Reilly, O.M.: On the dynamics of the eye: geodesics on a configuration manifold, motions of the gaze direction and Helmholtz’s theorem. Nonlinear Dynamics 80 (3), 1303–1327 (2015). URL http://dx.doi.org/10.1007/s11071-015-1945-0

  44. Olsson, M.: On the fundamental moving load problem. Journal of Sound and Vibration 145 (2), 299–307 (1991). URL http://dx.doi.org/10.1016/0022-460X(91)90593-9

  45. O’Reilly, O.M.: On steady motions of a drawn cable. ASME Journal of Applied Mechanics 63 (1), 180–189 (1996). URL http://dx.doi.org/10.1115/1.2787196

  46. O’Reilly, O.M.: The energy jump condition for thermomechanical media in the presence of configurational forces. Continuum Mechanics and Thermodynamics 18 (6), 361–365 (2007). URL http://dx.doi.org/10.1007/s00161-006-0036-3

  47. O’Reilly, O.M.: A material momentum balance law for rods. Journal of Elasticity 86 (2), 155–172 (2007). URL http://dx.doi.org/10.1007/s10659-006-9089-6

  48. O’Reilly, O.M., Payen, S.: The attitudes of constant angular velocity motions. International Journal of Non-Linear Mechanics 41 (6–7), 1–10 (2006). URL http://dx.doi.org/10.1016/j.ijnonlinmec.2006.05.001

  49. O’Reilly, O.M., Peters, D.M.: Nonlinear stability criteria for tree-like structures composed of branched elastic rods. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 468 (2137), 206–226 (2012). URL http://dx.doi.org/10.1098/rspa.2011.0291

  50. O’Reilly, O.M., Tresierras, T.N.: On the static equilibria of branched elastic rods. International Journal of Engineering Science 49 (2), 212–227 (2011). URL http://dx.doi.org/10.1016/j.ijengsci.2010.11.008

  51. O’Reilly, O.M., Varadi, P.C.: A treatment of shocks in one-dimensional thermomechanical media. Continuum Mechanics and Thermodynamics 11 (6), 339–352 (1999). URL http://dx.doi.org/10.1007/s001610050116

  52. O’Reilly, O.M., Varadi, P.C.: On energetics and conservations for strings in the presence of singular sources of momentum and energy. Acta Mechanica 165 (1–2), 27–45 (2003). URL http://dx.doi.org/10.1007/s00707-003-0032-7

  53. O’Reilly, O.M., Varadi, P.C.: On some peculiar aspects of axial motions of closed loops of string in the presence of a singular supply of momentum. ASME Journal of Applied Mechanics 71 (4), 541–545 (2004). URL http://dx.doi.org/10.1115/1.1756139

  54. Ouyang, H.: Moving-load dynamic problems: A tutorial (with a brief overview). Mechanical Systems and Signal Processing 25 (6), 2039–2060 (2011). URL http://dx.doi.org/10.1016/j.ymssp.2010.12.010

  55. Perkins, N.C., Mote, Jr., C.D.: Three dimensional vibration of travelling elastic cables. Journal of Sound and Vibration 114 (2), 325–340 (1987). URL http://dx.doi.org/10.1016/S0022-460X(87)80157-8

  56. Perkins, N.C., Mote, Jr., C.D.: Theoretical and experimental stability of two translating cable equilibria. Journal of Sound and Vibration 128 (3), 397–410 (1989). URL http://dx.doi.org/10.1016/0022-460X(89)90782-7

  57. Reeken, M.: The equation of motion of a chain. Mathematische Zeitschrift 155 (3), 219–237 (1977). URL http://dx.doi.org/10.1007/BF02028442

  58. Schajer, G.S.: The vibration of a rotating circular string subject to a fixed elastic restraint. Journal of Sound and Vibration 92 (1), 11–19 (1984). URL http://dx.doi.org/10.1016/0022-460X(84)90369-9

  59. Shuster, M.D.: A survey of attitude representations. American Astronautical Society. Journal of the Astronautical Sciences 41 (4), 439–517 (1993)

    MathSciNet  Google Scholar 

  60. Steinmann, P., Maugin, G.A. (eds.): Mechanics of Material Forces, Advances in Mechanics and Mathematics, vol. 11. Springer-Verlag, New York (2005). URL http://dx.doi.org/10.1007/b137232

  61. Tian, J., Hutton, S.G.: Lateral vibrational instability mechanisms in a constrained rotating string. ASME Journal of Applied Mechanics 65 (3), 774–776 (1998). URL http://dx.doi.org/10.1006/jsvi.1999.2237

  62. Tian, J., Hutton, S.G.: On the mechanisms of vibrational instability in a constrained rotating string. Journal of Sound and Vibration 225 (1), 111–126 (1999). URL http://dx.doi.org/10.1006/jsvi.1999.2237

  63. Tomassetti, G.: On configurational balance in slender bodies. Archive of Applied Mechanics 81 (8), 1041–1050 (2010). URL http://dx.doi.org/10.1007/s00419-010-0470-3

  64. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, third edn. Springer-Verlag, Berlin (2004). Edited, and with a preface, by Stuart S. Antman

    Google Scholar 

  65. Truskinovskii, L.M.: Equilibrium phase interfaces. Soviet Physics Doklady 27 (7), 551–552 (1982)

    Google Scholar 

  66. Truskinovsky, L.: Kinks versus shocks. In: R. Fosdick, E. Dunn, H. Slemrod (eds.) Shock induced transitions and phase structures in general media, IMA Volumes in Mathematics and its Applications, vol. 52, pp. 185–229. Springer-Verlag, New York (1993). URL http://dx.doi.org/10.1007/978-1-4613-8348-2_11

  67. Wickert, J.A., Mote, Jr., C.D.: On the energetics of axially moving continua. Journal of the Acoustical Society of America 85 (3), 1365–1368 (1989). URL http://dx.doi.org/10.1121/1.397418

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

O’Reilly, O.M. (2017). Mechanics of a String. In: Modeling Nonlinear Problems in the Mechanics of Strings and Rods. Interaction of Mechanics and Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-50598-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50598-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50596-1

  • Online ISBN: 978-3-319-50598-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics