Skip to main content

Foot Kinematics: Models Used to Study Feet in Children with Cerebral Palsy

  • Living reference work entry
  • First Online:
Cerebral Palsy
  • 150 Accesses

Abstract

Individuals with cerebral palsy often have functional deficits in their feet that adversely affect their gait. In order to effectively treat these deficits, an accurate description of the function of the individual’s foot function is necessary. The foot is a complex structure with many intrinsic components. Traditionally, the foot’s function has been measured through physical exams, pedobarographs, force plates, and a single-segment approximation in motion analysis. With improvements in technology, it has become clinically practical to measure the kinematics of the foot using multiple segments. These models provide the clinician with information and insight into the function of intrinsic structures of the foot, while the foot performs an actual task. This chapter will explore the limitations of non-motion analysis measurement techniques, and the traditional single foot model. The multisegmented foot model will be introduced with a discussion of its limitations. Finally, the advantages and utility of the multisegmented foot model will be demonstrated through normative and clinical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Arndt A, Wolf P, Liu A, Nester C, Stacoff A, Jones R, Lundgren P, Lundberg A (2007) Intrinsic foot kinematics measured in vivo during the stance phase of slow running. J Biomech 40(12):2672–2678

    Article  CAS  Google Scholar 

  • Brown KM, Bursey DE, Arneson LJ, Andrews CA, Ludwig PM, Glasoe WM (2009) Consideration of digitization precision when building local coordinate axes for a foot model. J Biomech 42:1263–1269

    Article  Google Scholar 

  • Cappozzo A, Catani F, Della Croce U, Leardini A (1995) Position and orientation of bones during movement: anatomical frame definition and determination. Clin Biomech 10:171–178

    Article  CAS  Google Scholar 

  • Cavanagh PR, Morag E, Boulton AJM, Young MJ, Deffner KT, Pammer SE (1997) The relationship of static foot structure to dynamic foot function. J Biomech 30:243–250

    Article  CAS  Google Scholar 

  • Chang CH, Miller F, Schuyler J (2002) Dynamic pedobarograph in evaluation of varus and valgus foot deformities. J Pediatr Orthop 22:813

    PubMed  Google Scholar 

  • Chen J, Siegler S, Schneck CD (1988) The three dimensional kinematics and flexibility characteristics of the human ankle and subtalar joint – part II: flexibility characteristics. J Biomech Eng 110(4):374–385

    Article  CAS  Google Scholar 

  • Church C, Lennon, N, Coleman S, Henley J, Nagai M, Miller F (2008) Dynamic foot pressure in the early evolution of foot deformities in children with spastic cerebral palsy. In: Harris GF, Smith PA, Marks RM (eds) Foot and ankle motion analysis: clinical treatment and technology. CRC Press, Boca Raton pp 93–103. https://books.google.com/books/about/Foot_and_Ankle_Motion_Analysis.html?id=EQGnLP_mKHcC&printsec=frontcover&source=kp_read_button#v=onepage&q&f=false

  • Close JR, Inman VT, Poor PM, Todd FN (1967) The function of the subtalar joint. Clin Orthop Relat Res 50:159–179

    Article  CAS  Google Scholar 

  • Curtis DJ, Bencke J, Stebbins JA, Stansfield B (2009) Intra-rater repeatability of the oxford foot model in healthy children in different stages of the foot roll over process during gait. Gait Posture 30(1):118–121

    Article  CAS  Google Scholar 

  • Davids JR, Gibson TW, Pugh LI (2005) Quantitative segmental analysis of weight bearing radiographs of the foot and ankle for children: normal alignment. J Pediatr Orthop 25:769–776

    Article  Google Scholar 

  • Deschamps K, Staes F, Roosen P, Nobels F, Desloovere K, Bruyninckx H, Matricali GA (2011) Body of evidence supporting the clinical use of 3D multi-segment foot models: a systematic review. Gait Posture 33(3):338–349

    Article  Google Scholar 

  • Gage JR, Schwartz MH, Koop SE, Novacheck TF (2009) The identification and treatment of gait problems in cerebral palsy (clinics in developmental medicine). Mac Keith Press, London

    Google Scholar 

  • Gorton GE, Herbert DA, Gannotti ME (2009) Assessment of the kinematic variability among 12 motion analysis laboratories Gait and Posture 29:398–402. https://www.ncbi.nlm.nih.gov/pubmed/19056271

    Article  Google Scholar 

  • Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  CAS  Google Scholar 

  • Henley J, Wesdock K, Masiello G, Nogi J (2001) A new three-segment foot model for gait analysis in children and adults. GCMA conference. Sacramento, 26–28 Apr

    Google Scholar 

  • Henley J, Richards J, Hudson D, Church C, Coleman S, Kerstetter L, Miller F (2004) Reliability of a clinically practical multi-segment foot marker set/model. Abstracts of Ninth Annual Gait and Clinical Movement Analysis Society Lexington KY, 21–24 Apr

    Google Scholar 

  • Henley J, Richards J, Hudson D, Church C, Coleman S, Kerstetter L, Miller F (2008) Reliability of a clinically practical multi-segment foot marker set/model. In: Harris G, Smith P, Marks R (eds) Foot and ankle motion analysis clinical treatment and technology. CRC Press, Boca Raton, pp 445–463. https://books.google.com/books/about/Foot_and_Ankle_Motion_Analysis.html?id=EQGnLP_mKHcC&printsec=frontcover&source=kp_read_button#v=onepage&q&f=false

  • Leardini A, Cappozzo A, Catani F, Toksvig-Larsen S, Petitto A, Sforza V, Cassanelli G, Gianini S (1999) Validation of a functional method for the estimation of the hip joint centre location. J Biomech 32:99–103

    Article  CAS  Google Scholar 

  • Leardini A, Chiari L, Della Croce U, Cappozzo A (2005) Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212–225

    Article  Google Scholar 

  • Leardini A, Benedetti MG, Berti L, Bettinelli D, Nativo R, Giannini S (2007) Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait Posture 25(3):455

    Article  Google Scholar 

  • Lewis GS, Sommer HJ, Piazza SJ (2006) In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes. J Biomech Eng 128(4):596–603

    Article  Google Scholar 

  • Lewis GS, Kirby KA, Piazza SJ (2007) Determination of subtalar joint axis location by restriction of talocrural joint motion. Gait Posture 25(1):63–69

    Article  Google Scholar 

  • Lui W, Siegler S, Hillstrom H, Whitney K (1997) Three-dimensional, six-degrees-of-freedom kinematics of the human hindfoot during the stance phase of level walking. Hum Mov Sci 16:283–289

    Article  Google Scholar 

  • Lundgren P, Nester C, Liu A, Arndt A, Jones R, Stacoff A, Wolf P, Lundberg A (2008) Invasive in vivo measurement of rear-, mid- and forefoot motion during walking. Gait Posture 28(1):93–100

    Article  CAS  Google Scholar 

  • MacWilliams BA, Cowley M, Nicholson DE (2003) Foot kinematics and kinetics during adolescent gait. Gait Posture 17(3):214–224

    Article  Google Scholar 

  • Mahaffey R, Morrison SC, Drechsler WI, Cramp MC (2013) Evaluation of multi-segment kinematic modeling in the pediatric foot models. J Foot Ankle Res 6:43

    Article  Google Scholar 

  • Mann RA, Coughlin MJ (1992a) Surgery of the foot and ankle, vol 1. Mosby, St. Louis

    Google Scholar 

  • Mann RA, Coughlin MJ (1992b) Surgery of the foot and ankle, vol 2. Mosby, St. Louis

    Google Scholar 

  • Maurer JD et al (2013) A kinematic description of dynamic midfoot break in children using a multi-segment foot model. Gait Posture 38:287–292

    Article  Google Scholar 

  • Miller F (2005) Cerebral Palsy. Springer Science – Business Media. Singapore https://www.springer.com/us/book/9780387204376

  • Mosca V (2010) Flexible flatfoot in children and adolescents. J Child Orthop 4:107–121

    Article  Google Scholar 

  • Nester C, Jones RK, Liu A, Howard D, Lundberg A, Arndt A, Lundgren P, Stacoff A, Wolf P (2007a) Foot kinematics during walking measured using bone and surface mounted markers. J Biomech 40(15):3412–3423

    Article  CAS  Google Scholar 

  • Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T, Patterson P (2007b) In vitro study of foot kinematics using a dynamic walking cadaver model. J Biomech 40(9):1927–1937

    Article  CAS  Google Scholar 

  • Nester CJ, Liu AM, Ward E, Howard D, Cocheba J, Derrick T (2010) Error in the description of foot kinematics due to violation of rigid body assumptions. J Biomech 43(4):666–672

    Article  CAS  Google Scholar 

  • Nicholson KF, Church C, Takata C, Niiler T, Chen BP, Lennon N, Sees JP, Henley J, Miller F (2018) Comparison of three-dimensional multi-segmental foot models used in clinical gait laboratories. Gait Posture 63:236–241

    Article  Google Scholar 

  • Novak AC, Mayich DJ, Perry SD, Daniels TR, Brodsky JW (2014) Gait analysis for foot and ankle surgeons – topical review, part 2: approaches to multi-segment modeling of the foot. Foot Ankle Int 35(2):178–191

    Article  Google Scholar 

  • Oatis C (1988) Biomechanics of the foot and ankle under static conditions. Phys Ther 68:1815

    Article  CAS  Google Scholar 

  • Okita N, Meyers SA, Challis JH, Sharkey NA (2009) An objective evaluation of a segmented foot model. Gait Posture 30(1):27–34

    Article  Google Scholar 

  • Ouzounanian TJ, Shereff MJ (1989) In vitro determination of midfoot motion. Foot Ankle 10(3):140–146

    Article  Google Scholar 

  • Peeters K, Natsakis T, Burg J, Spaepen P, Jonkers I, Dereymaeker G, Vander Sloten J (2013) An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator. Proc Inst Mech Eng H 227(9):955–967

    Article  Google Scholar 

  • Rankine L, Long J, Canseco K, Harris GF (2008) Multisegmental foot modeling: a review. Crit Rev Biomed Eng 36(2–3):127–181

    Article  Google Scholar 

  • Reinschmidt C, van Den Bogert AJ, Murphy N, Lundberg A, Nigg BM (1997) Tibiocalcaneal motion during running, measured with external and bone markers. Clin Biomech 12(1):8–16

    Article  CAS  Google Scholar 

  • Root ML, Orien WP, Weed JH (1977) Clinical biomechanics: normal and abnormal function of the foot. Clinical Biomechanics Corp, Los Angeles

    Google Scholar 

  • Saraswat P, MacWilliams BA, Davis RB (2012) A multi-segment foot model based on anatomically registered technical coordinate systems: method repeatability in pediatric feet. Gait Posture 35:547–555

    Article  Google Scholar 

  • Scott SH, Winter DA (1991) Talocrural and talocalcaneal joint kinematics and kinetics during the stance phase of walking. J Biomech 24(8):743–752

    Article  CAS  Google Scholar 

  • Shultz R, Kedgley AE, Jenkyn TR (2011) Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy. Gait Posture 34(1):44–48

    Article  CAS  Google Scholar 

  • Siegler S, Chen J, Schneck CD (1988) The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints – part 1: kinematics. J Biomech Eng 110(4):364–373

    Article  CAS  Google Scholar 

  • Simon J, Doederlein L, McIntosh AS, Metaxiotis D, Bock HG, Wolf SI (2006) The Heidelberg foot measurement method: development, description and assessment. Gait Posture 23:411–424

    Article  CAS  Google Scholar 

  • Stebbins J, Harrington M, Thompson N, Zavatsky A, Theologis T (2006) Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 23(4):401–410

    Article  CAS  Google Scholar 

  • Tranberg R, Karlsson D (1998) The relative skin movement of the foot: a 2-D roentgen photogrammetry study. Clin Biomech (Bristol Avon) 13(1):71–76

    Article  Google Scholar 

  • Westblad P, Hashimoto T, Winson I, Lundberg A, Arndt A (2002) Differences in ankle-joint complex motion during the stance phase of walking as measured by superficial and bone anchored markers. Foot Ankle Int 23(9):856–863

    Article  Google Scholar 

  • Whittaker EC, Aubin PM, Ledoux WR (2011) Foot bone kinematics as measured in a cadaveric robotic gait simulator. Gait Posture 33(4):645–650

    Article  Google Scholar 

  • Winter DA (2005) Biomechanics and motor control of human movement, 3rd edn. Wiley, New York

    Google Scholar 

  • Wolf P, Stacoff A, Liu A, Nester C, Arndt A, Lundberg A, Stuessi E (2008) Functional units of the human foot. Gait Posture 28(3):434–441

    Article  CAS  Google Scholar 

  • Wong Y, Kim W, Ying N (2005) Passive motion characteristics of the talocrural and the subtalar joint by dual Eular angles. J Pediatr Orthop 38(12):2480–2485

    Google Scholar 

  • Wrbaskić N, Dowling JJ (2007) An investigation into the deformable characteristics of the human foot using fluoroscopic imaging. Clin Biomech 22(2):230–238

    Article  Google Scholar 

  • Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D’Lima DD, Cristofolini L, Witte H, Schmid O, Stokes I (2002) Standardization and Terminology Committee of the International Society of Biomechanics. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion–part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 35(4):543–8. https://www.ncbi.nlm.nih.gov/pubmed/11934426

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Henley .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Henley, J. (2019). Foot Kinematics: Models Used to Study Feet in Children with Cerebral Palsy. In: Miller, F., Bachrach, S., Lennon, N., O'Neil, M. (eds) Cerebral Palsy. Springer, Cham. https://doi.org/10.1007/978-3-319-50592-3_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50592-3_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50592-3

  • Online ISBN: 978-3-319-50592-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics