Skip to main content

Respiratory and Ventilatory Assessment

  • Chapter
  • First Online:
Nursing in Critical Care Setting

Abstract

Respiratory mechanics refers to the expression of lung function through measures of pressure and flow. From these measurements, a variety of derived indexes can be determined, such as volume, compliance, resistance, and work of breathing.

Ventilation monitoring plays an important role in the current management of patients with acute respiratory failure, but sometimes there’s a lack of definitions regarding which “signals” and “derived variables” should be prioritized, as well as specifications about the timing and modes of application.

New techniques of respiratory monitoring have recently been made available for clinical use, but their use and arrangement are not always well defined.

We summarize the current modes of respiratory monitoring and their potential practical applications during invasive and noninvasive ventilation and during extracorporeal membrane oxygenation in patients affected by severe ARDS, needing rescue therapies to maintain blood oxygenation adequate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nieman GF, Satalin J, Andrews P, Habashi NM, Gatto LA. Lung stress, strain, and energy load: engineering concepts to understand the mechanism of ventilator-induced lung injury (VILI). Intensive Care Med Exp. 2016;4:16. https://doi.org/10.1186/s40635-016-0090-5. Epub 2016 Jun 18

    Article  PubMed  PubMed Central  Google Scholar 

  2. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307:2526–33. https://doi.org/10.1001/jama.2012.5669.

    Article  CAS  Google Scholar 

  3. Bein T, Grasso S, Moerer O, Quintel M, Guerin C, Deja M, et al. The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med. 2016;42:699–711. https://doi.org/10.1007/s00134-016-4325-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jubran A. Pulse oximetry. Crit Care. 2015;19:27. https://doi.org/10.1186/s13054-015-0984-8.

    Article  Google Scholar 

  5. Nitzan M, Romem A, Koppel R. Pulse oximetry: fundamentals and technology update. Med Devices (Auckl). 2014;7:231–9. https://doi.org/10.2147/MDER.S47319.

    Article  Google Scholar 

  6. Walsh BK, Crotwell DN, Restrepo RD. Capnography/capnometry during mechanical ventilation: 2011. Respir Care. 2011;56:503–9. https://doi.org/10.4187/respcare.01175.

    Article  PubMed  Google Scholar 

  7. Thompson JE, Jaffe MB. Capnographic waveforms in the mechanically ventilated patient. Respir Care. 2005;50:100–8.

    PubMed  Google Scholar 

  8. Kodali BS, Urman RD. Capnography during cardiopulmonary resuscitation: current evidence and future directions. J Emerg Trauma Shock. 2014;7:332–40.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Jordan J, Rose L, Dainty KN, Noyes J, Blackwood B. Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis. Cochrane Database Syst Rev. 2016;10:CD011812. https://doi.org/10.1002/14651858.CD011812.pub2.

    Article  PubMed  Google Scholar 

  10. Brochard L, Martin GS, Blanch L, Pelosi P, Belda FJ, Jubran A, et al. Clinical review: respiratory monitoring in the ICU—a consensus of 16. Crit Care. 2012;16:219. https://doi.org/10.1186/cc11146.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mehta S, Cook DJ, Skrobik Y, Muscedere J, Martin CM, Stewart TE, et al. A ventilator strategy combining low tidal volume ventilation, recruitment maneuvers, and high positive end-expiratory pressure does not increase sedative, opioid, or neuromuscular blocker use in adults with acute respiratory distress syndrome and may improve patient comfort. Ann Intensive Care. 2014;4:33–7. https://doi.org/10.1186/s13613-014-0033-9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sole ML, Bennett M, Ashworth S. Clinical indicators for endotracheal suctioning in adult patients receiving mechanical ventilation. Am J Crit Care. 2015;24:318–24. https://doi.org/10.4037/ajcc2015794.

    Article  PubMed  Google Scholar 

  13. AARC Clinical Practice Guidelines. Endotracheal suctioning of mechanically ventilated patients with artificial airways 2010. American Association for Respiratory Care. Respir Care. 2010;55:758–6.

    Google Scholar 

  14. Hough CL, Kallet RH, Ranieri VM, Rubenfeld GD, Luce JM, Hudson LD. Intrinsic positive end-expiratory pressure in Acute Respiratory Distress Syndrome (ARDS) Network subjects. Crit Care Med. 2005;33(3):527.

    Article  PubMed  Google Scholar 

  15. Vitacca M, Lanini B, Nava S, Barbano L, Portal R, Clini E, et al. Inspiratory muscle workload due to dynamic intrinsic PEEP in stable COPD patients: effects of two different settings of non-invasive pressure-support ventilation. Monaldi Arch Chest Dis. 2004;6:81–5. https://doi.org/10.4081/monaldi.2004.704.

    Article  Google Scholar 

  16. Mauri T, Yoshida T, Bellani G, Goligher EC, Carteaux G, Rittayamai N, et al. Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives. Intensive Care Med. 2016;42:1360–73. https://doi.org/10.1007/s00134-016-4400-x.

    Article  PubMed  Google Scholar 

  17. Moerer O, Barwing J, Quintel M. Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation. Anaesthesist. 2008;57:998–1005. https://doi.org/10.1007/s00101-008-1412-0.

    Article  PubMed  CAS  Google Scholar 

  18. Navalesi P, Colombo D, Della Corte F. NAVA ventilation. Minerva Anestesiol. 2010;76:346–52.

    PubMed  CAS  Google Scholar 

  19. Piquilloud L, Vignaux L, Bialais E, Roeseler J, Sottiaux T, Laterre PF, et al. Neurally adjusted ventilatory assist improves patient-ventilator interaction. Intensive Care Med. 2011;37:263–71. https://doi.org/10.1007/s00134-010-2052-9.

    Article  PubMed  Google Scholar 

  20. Petrof BJ, Hussain SN. Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care. 2016;22:67–72. https://doi.org/10.1097/MCC.0000000000000272.

    Article  PubMed  Google Scholar 

  21. Rose L, Schultz MJ, Cardwell CR, Jouvet P, McAuley DF, Blackwood B. Automated versus non-automated weaning for reducing the duration of mechanical ventilation for critically ill adults and children: a Cochrane systematic review and meta-analysis. Crit Care. 2015;19:4. https://doi.org/10.1186/s13054-015-0755-6.

    Article  Google Scholar 

  22. Vagheggini G, Mazzoleni S, Vlad Panait E, Navalesi P, Ambrosino N. Physiologic response to various levels of pressure support and NAVA in prolonged weaning. Respir Med. 2013;107:1748–54. https://doi.org/10.1016/j.rmed.2013.08.013.

    Article  PubMed  Google Scholar 

  23. Bellani G, Patroniti N, Weismann D, Galbiati L, Curto F, et al. Measurement of pressure-time product during spontaneous assisted breathing by rapid interrupter technique. Anesthesiology. 2007;106:484–90.

    Article  PubMed  Google Scholar 

  24. Blanch L, Villagra A, Sales B, Montanya J, Lucangelo U, Luján M, et al. Asynchronies during mechanical ventilation are associated with mortality. Intensive Care Med. 2015;41:633–41. https://doi.org/10.1007/s00134-015-3692-6.

    Article  PubMed  Google Scholar 

  25. Delisle S, Ouellet P, Bellemare P, Tétrault JP, Arsenault P. Sleep quality in mechanically ventilated patients: comparison between NAVA and PSV modes. Ann Intensive Care. 2011;1:42–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murias G, Lucangelo U, Blanch L. Patient-ventilator asynchrony. Curr Opin Crit Care. 2016;22:53–9. https://doi.org/10.1097/MCC.0000000000000270.

    Article  PubMed  Google Scholar 

  27. Cavaliere F, Conti G, Costa R, Spinazzola G, Proietti R, Sciuto A, et al. Exposure to noise during continuous positive airway pressure: influence of interfaces and delivery systems. Acta Anaesthesiol Scand. 2008;52:52–6. https://doi.org/10.1111/j.1399-6576.2007.01474.x.

    Article  PubMed  CAS  Google Scholar 

  28. Patel BK, Wolfe KS, Pohlman AS, Hall JB, Kress JP. Effect of noninvasive ventilation delivered by helmet vs face mask on the rate of endotracheal intubation in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2016;315:2435–4. https://doi.org/10.1001/jama.2016.6338.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Bellani G, Patroniti N, Greco M, Foti G, Pesenti A. The use of helmets to deliver non-invasive continuous positive airway pressure in hypoxemic acute respiratory failure. Minerva Anestesiol. 2008;74:651–6.

    PubMed  CAS  Google Scholar 

  30. Patroniti N, Foti G, Manfio A, Coppo A, Bellani G, Pesenti A. Head helmet versus face mask for non-invasive continuous positive airway pressure: a physiological study. Intensive Care Med. 2003;29:1680–7. https://doi.org/10.1007/s00134-003-1931-8.

    Article  PubMed  Google Scholar 

  31. Ferrario D, Lucchini A. Helmet delivered CPAP for in-patients. Minerva Anestesiol. 2002;68:481–4.

    PubMed  CAS  Google Scholar 

  32. Lucchini A, Valsecchi D, Elli S, Doni V, Corsaro P, Tundo P, et al. The comfort of patients ventilated with the helmet bundle. Assist Inferm Ric. 2010;29(4):174–83.

    PubMed  Google Scholar 

  33. Milan M, Zanella A, Isgrò S, Deab SA, Magni F, Pesenti A, et al. Performance of different continuous positive airway pressure helmets equipped with safety valves during failure of fresh gas supply. Intensive Care Med. 2011;37:1031–5. https://doi.org/10.1007/s00134-011-2207-3.

    Article  PubMed  Google Scholar 

  34. Trevisanuto D, Camiletti L, Udilano A, Doglioni N, Zanardo V. Noise levels during neonatal helmet CPAP. Arch Dis Child Fetal Neonatal Ed. 2008;93:F396–7. https://doi.org/10.1136/adc.2008.140715.

    Article  PubMed  CAS  Google Scholar 

  35. American Association for Respiratory Care, Restrepo RD, Walsh BK. Humidification during invasive and noninvasive mechanical ventilation: 2012. Respir Care. 2012;57:782–8. https://doi.org/10.4187/respcare.01766.

    Article  Google Scholar 

  36. American National Standards Institute; American Society of Anesthesiologists. Standard for humidifiers and nebulizers for medical use. ANSI. 1979;Z79:9.

    Google Scholar 

  37. Chiumello D, Chierichetti M, Tallarini F, Cozzi P, Cressoni M, Polli F, et al. Effect of a heated humidifier during continuous positive airway pressure delivered by a helmet. Crit Care. 2008;12:R55. https://doi.org/10.1186/cc6875.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nava S, Ceriana P. Patient-ventilator interaction during noninvasive positive pressure ventilation. Respir Care Clin N Am. 2005;11:281–9. https://doi.org/10.1016/j.rcc.2005.02.003.

    Article  PubMed  Google Scholar 

  39. Moerer O, Beck J, Brander L, Costa R, Quintel M, Slutsky AS, et al. Subject-ventilator synchrony during neural versus pneumatically triggered non-invasive helmet ventilation. Intensive Care Med. 2008;34:1615–23. https://doi.org/10.1007/s00134-008-1163-z.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lemyze M, Mallat J, Nigeon O, Barrailler S, Pepy F, Gasan G, et al. Rescue therapy by switching to total face mask after failure of face mask-delivered noninvasive ventilation in do-not-intubate patients in acute respiratory failure. Crit Care Med. 2013;41:481–8. https://doi.org/10.1097/CCM.0b013e31826ab4af.

    Article  PubMed  Google Scholar 

  41. Bambi S. Noninvasive positive pressure ventilation: an ABC approach for advanced nursing in emergency departments and acute care settings. Dimens Crit Care Nurs. 2009;28:253–63. https://doi.org/10.1097/DCC.0b013e3181b3ffdc.

    Article  PubMed  Google Scholar 

  42. Bambi S, Peris A, Esquinas AM. Pressure ulcers caused by masks during noninvasive ventilation. Am J Crit Care. 2016;25:6. https://doi.org/10.4037/ajcc2016906.

    Article  PubMed  Google Scholar 

  43. Nava S, Navalesi P, Gregoretti C. Interfaces and humidification for noninvasive mechanical ventilation. Respir Care. 2009;54:71–84.

    PubMed  Google Scholar 

  44. Pisani L, Carlucci A, Nava S. Interfaces for noninvasive mechanical ventilation: technical aspects and efficiency. Minerva Anestesiol. 2012;78:1154–61.

    PubMed  CAS  Google Scholar 

  45. Di Marco F, Centanni S, Bellone A, Messinesi G, Pesci A, Scala R, et al. Optimization of ventilator setting by flow and pressure waveforms analysis during noninvasive ventilation for acute exacerbations of COPD: a multicentric randomized controlled trial. Crit Care. 2011;15:R283. https://doi.org/10.1186/cc10567.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. https://doi.org/10.1001/jama.2016.0291.

    Article  PubMed  CAS  Google Scholar 

  47. Luciani GB, Hoxha S, Torre S, Rungatscher A, Menon T, Barozzi L, et al. Improved outcome of cardiac extracorporeal membrane oxygenation in infants and children using magnetic levitation centrifugal pumps. Artif Organs. 2016;40:27–33. https://doi.org/10.1111/aor.12647.

    Article  PubMed  CAS  Google Scholar 

  48. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–63. https://doi.org/10.1016/S0140-6736(09)61069-2.

    Article  PubMed  Google Scholar 

  49. Patroniti N, Zangrillo A, Pappalardo F, Peris A, Cianchi G, Braschi A, et al. The Italian ECMO network experience during the 2009 influenza A(H1N1) pandemic: preparation for severe respiratory emergency outbreaks. Intensive Care Med. 2011;37:1447–5. https://doi.org/10.1007/s00134-011-2301-6.

    Article  PubMed  Google Scholar 

  50. Gattinoni L, Carlesso E, Langer T. Clinical review: extracorporeal membrane oxygenation. Crit Care. 2011;15:243. https://doi.org/10.1186/cc10490.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Pesenti A, Zanella A, Patroniti N. Extracorporeal gas exchange. Curr Opin Crit Care. 2009;15:52–8. https://doi.org/10.1097/MCC.0b013e3283220e1f.

    Article  PubMed  Google Scholar 

  52. Avalli L, Sangalli F, Migliari M, Maggioni E, Gallieri S, Segramora V, et al. Early vascular complications after percutaneous cannulation for extracorporeal membrane oxygenation for cardiac assist. Minerva Anestesiol. 2016;82:36–4.

    PubMed  Google Scholar 

  53. Chauhan S, Subin S. Extracorporeal membrane oxygenation—an anaesthesiologist’s perspective—part II: clinical and technical consideration. Ann Card Anaesth. 2012;15:69–82. https://doi.org/10.4103/0971-9784.91485.

    Article  PubMed  Google Scholar 

  54. Posluszny J, Rycus PT, Bartlett RH, Engoren M, Haft JW, Lynch WR, et al. Outcome of adult respiratory failure patients receiving prolonged (≥14 days) ECMO. Ann Surg. 2016;263:573–8. https://doi.org/10.1097/SLA.0000000000001176.

    Article  PubMed  Google Scholar 

  55. Lubnow M, Philipp A, Foltan M, Bull Enger T, Lunz D, Bein T, et al. Technical complications during veno-venous extracorporeal membrane oxygenation and their relevance predicting a system-exchange—retrospective analysis of 265 cases. PLoS One. 2014;9:e112316. https://doi.org/10.1371/journal.pone.0112316.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Lucchini .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lucchini, A., De Felippis, C., Bambi, S. (2018). Respiratory and Ventilatory Assessment. In: Nursing in Critical Care Setting. Springer, Cham. https://doi.org/10.1007/978-3-319-50559-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50559-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50558-9

  • Online ISBN: 978-3-319-50559-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics