Skip to main content

Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram-Negative Bacteria

  • Reference work entry
  • First Online:
Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions

Abstract

Bacterial cells are surrounded by a cellular envelope composed of the cytoplasmic membrane and the cell wall. The cytoplasmic membrane is a phospholipid bilayer that provides an appropriate matrix for membrane proteins involved in many different cellular processes. Membrane lipid composition can change in response to different environmental challenges such as the presence of toxic compounds (e.g., aromatic hydrocarbons). The changes in membrane fluidity induced by stressors are counteracted by the bacteria through variations in the length of fatty acids, in the degree of saturation, and in the cis/trans configuration of the unsaturated fatty acids. The presence of cyclopropane fatty acids and changes in phospholipid head groups has also been shown to be involved in this stress response. The adaptive alterations of the main membrane phospholipids and fatty acids present in the cytoplasmic membrane are the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arendt W, Hebecker S, Jager S, Nimtz M, Moser J (2012) Resistance phenotypes mediated by aminoacyl-phosphatidylglycerol synthases. J Bacteriol 194:1401–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt W, Groenewold MK, Hebecker S, Dickschat JS, Moser J (2013) Identification and characterization of a periplasmic aminoacyl-phosphatidylglycerol hydrolase responsible for Pseudomonas aeruginosa lipid homeostasis. J Biol Chem 288:24717–24730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B, Magalon A (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 1817:1937–1949

    Article  CAS  PubMed  Google Scholar 

  • Baumgarten T, Vazquez J, Bastisch C, Veron W, Feuilloley MG, Nietzsche S, Wick LY, Heipieper HJ (2012) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cell surface properties and membrane vesicle formation in Pseudomonas putida DOT-T1E. Appl Microbiol Biotechnol 93:837–845

    Article  CAS  PubMed  Google Scholar 

  • Bernal P, Munoz-Rojas J, Hurtado A, Ramos JL, Segura A (2007a) A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. Environ Microbiol 9:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Bernal P, Segura A, Ramos JL (2007b) Compensatory role of the cis-trans-isomerase and cardiolipin synthase in the membrane fluidity of Pseudomonas putida DOT-T1E. Environ Microbiol 9:1658–1664

    Article  CAS  PubMed  Google Scholar 

  • Chang YY, Cronan JE Jr (1999) Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol 33:249–259

    Article  CAS  PubMed  Google Scholar 

  • Cronan JE, Rock CO (1996) Biosynthesis of membrane lipids. In: Neidhart FC, Curtis R III, Ingraham JL, Link ECC, Low KB, Magasanik WS, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC

    Google Scholar 

  • Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie Van Leeuwenhoek 76:159–184

    Article  CAS  PubMed  Google Scholar 

  • DiRusso CC, Black PN, Weimar JD (1999) Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog Lipid Res 38:129–197

    Article  CAS  PubMed  Google Scholar 

  • Dowhan W (2013) A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim Biophys Acta 1831:471–494

    Article  CAS  PubMed  Google Scholar 

  • Geiger O, Lopez-Lara IM, Sohlenkamp C (2013) Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta 1831:503–513

    Article  CAS  PubMed  Google Scholar 

  • Geske T, Vom Dorp K, Dormann P, Holzl G (2013) Accumulation of glycolipids and other non-phosphorous lipids in Agrobacterium tumefaciens grown under phosphate deprivation. Glycobiology 23:69–80

    Article  CAS  PubMed  Google Scholar 

  • Ghorbal SK, Chatti A, Sethom MM, Maalej L, Mihoub M, Kefacha S, Feki M, Landoulsi A, Hassen A (2013) Changes in membrane fatty acid composition of Pseudomonas aeruginosa in response to UV-C radiations. Curr Microbiol 67:112–117

    Article  PubMed  Google Scholar 

  • Hancock R, Karunaratne D, Bernegger-Egli C (1994) Molecular organization and structural role of outer membrane macromolecules. In: Ghuysen JM, Hakenbeck R (eds) Bacterial cell wall. Elsevier, Amsterdam, pp 263–279

    Chapter  Google Scholar 

  • Hannich JT, Umebayashi K, Riezman H (2011) Distribution and functions of sterols and sphingolipids. Cold Spring Harb Perspect Biol 3:a004697

    Article  Google Scholar 

  • Heipieper HJ, Meinhardt F, Segura A (2003) The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 229:1–7

    Article  CAS  PubMed  Google Scholar 

  • Heipieper HJ, Neumann G, Kabelitz N, Kastner M, Richnow HH (2004) Carbon isotope fractionation during cis-trans isomerization of unsaturated fatty acids in Pseudomonas putida. Appl Microbiol Biotechnol 66:285–290

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Matsuzaki H, Matsumoto K, Shibuya I (1997) Unbalanced membrane phospholipid compositions affect transcriptional expression of certain regulatory genes in Escherichia coli. J Bacteriol 179:2872–2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junker F, Ramos JL (1999) Involvement of the cis/trans isomerase Cti in solvent resistance of Pseudomonas putida DOT-T1E. J Bacteriol 181:5693–5700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadner R (1996) Cytoplasmic membrane. In: Neidhardt FC, Curtis R III, Ingrahanm JL, Link ECC, Low KB, Magasanik WS, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and Molecular Biology. ASM Press, Washington, DC

    Google Scholar 

  • Loffhagen N, Härtig C, Geyer W, Voyevoda M, Harms H (2007) Competition between cis, trans and cyclopropane fatty acid formation and its impact on membrane fluidity. Eng Life Sci 7:67–74

    Article  CAS  Google Scholar 

  • Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61:1110–1117

    Article  CAS  PubMed  Google Scholar 

  • Moser R, Aktas M, Fritz C, Narberhaus F (2014) Discovery of a bifunctional cardiolipin/phosphatidylethanolamine synthase in bacteria. Mol Microbiol 92:959–972

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos JL (2006) Involvement of cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl Environ Microbiol 72:472–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murinova S, Dercova K (2014) Response mechanisms of bacterial degraders to environmental contaminants on the level of cell walls and cytoplasmic membrane. Int J Microbiol 2014:873081

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowak A, Mrozik A (2016) Facilitation of co-metabolic transformation and degradation of monochlorophenols by Pseudomonas sp. CF600 and changes in its fatty acid composition. Water Air Soil Pollut 227:83

    Article  PubMed  PubMed Central  Google Scholar 

  • Poger D, Mark AE (2015) A ring to rule them all: the effect of cyclopropane fatty acids on the fluidity of lipid bilayers. J Phys Chem B 119:5487–5495

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Duque E, Huertas MJ, Haidour A (1995) Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J Bacteriol 177:3911–3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JL, Duque E, Rodriguez-Herva JJ, Godoy P, Haidour A, Reyes F, Fernandez-Barrero A (1997) Mechanisms for solvent tolerance in bacteria. J Biol Chem 272:3887–3890

    Article  CAS  PubMed  Google Scholar 

  • Schweizer HP (2004) Fatty acid biosynthesis and biologically significant acyl transfer reactions in Pseudomonads. In: Ramos J-L (ed) Pseudomonas. Biosynthesis of macromolecules and molecular metabolism. Kluwer/Plenum Publishers, New York, pp 83–109

    Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269:8022–8028

    CAS  PubMed  Google Scholar 

  • Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 109:16504–16509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vences-Guzman MA, Geiger O, Sohlenkamp C (2012) Ornithine lipids and their structural modifications: from A to E and beyond. FEMS Microbiol Lett 335:1–10

    Article  CAS  PubMed  Google Scholar 

  • Whitfield C, Trent MS (2014) Biosynthesis and export of bacterial lipopolysaccharides. Annu Rev Biochem 83:99–128

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Rock CO (2013) Phosphatidic acid synthesis in bacteria. Biochim Biophys Acta 1831:495–502

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6:222–233

    Article  PubMed  Google Scholar 

  • Zhou A, Baidoo E, He Z, Mukhopadhyay A, Baumohl JK, Benke P, Joachimiak MP, Xie M, Song R, Arkin AP et al (2013) Characterization of NaCl tolerance in Desulfovibrio vulgaris Hildenborough through experimental evolution. ISME J 7:1790–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoradova S, Dudasova H, Lukacova L, Dercova K, Certik M (2011) The effect of polychlorinated biphenyls (PCBs) on the membrane lipids of Pseudomonas stutzeri. Int Biodeterior Biodegradation 65:1019–1023

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Ortega .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ortega, Á. et al. (2018). Membrane Composition and Modifications in Response to Aromatic Hydrocarbons in Gram-Negative Bacteria. In: Krell, T. (eds) Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50542-8_48

Download citation

Publish with us

Policies and ethics