Skip to main content

Problems of Hydrophobicity/Bioavailability: An Introduction

  • Reference work entry
  • First Online:
Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions

Abstract

This chapter discusses how the hydrophobicity and other properties of oil hydrocarbons influence their availability for toxic exposure, microbial degradation and growth. It also describes how the hydrocarbon bioavailability can control the maximum population size of a degrading microbial community in a given habitat (carrying capacity). Bioavailability is operationalized and presented as a process at the interface between microbial dynamics and physicochemical constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Booij K, Robinson CD, Burgess RM, Mayer P, Roberts CA, Ahrens L et al (2016) Passive sampling in regulatory chemical monitoring of nonpolar organic compounds in the aquatic environment. Environ Sci Technol 50:3–17

    Article  CAS  PubMed  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  CAS  Google Scholar 

  • Eastcott L, Shiu YS, Mackay D (1988) Environmentally relevant physical-chemical properties of hydrocarbons: a review of data and development of simple correlations. Oil Chem Pollut 4:191–216

    Article  CAS  Google Scholar 

  • Hanzel J, Thullner M, Harms H, Wick LY (2012) Walking the tightrope of bioavailability: growth dynamics of PAH degraders on vapour-phase PAH. Microb Biotechnol 5:79–86

    Article  CAS  PubMed  Google Scholar 

  • Harms H (1996) Bacterial growth on distant naphthalene diffusing through water, air, water-saturated and nonsaturated porous media. Appl Environ Microbiol 62:2286–2293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harmsen J (2007) Measuring bioavailability: from a scientific approach to standard methods. J Environ Qual 36:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Hoff JT, Mackay D, Gillham R, Shiu WY (1993) Partitioning of organic-chemicals at the air water interface in environmental systems. Environ Sci Technol 27:2174–2180

    Article  CAS  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Koch AL (1990) Diffusion – the crucial process in many aspects of the biology of bacteria. Adv Microb Ecol 11:37–70

    Article  Google Scholar 

  • Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed-substrate kinetics. Microbiol Mol Biol Rev 62:646–666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber WJ Jr, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    Article  CAS  Google Scholar 

  • Mao XH, Jiang R, Xiao W, Yu JG (2015) Use of surfactants for the remediation of contaminated soils: a review. J Hazard Mater 285:419–435

    Article  CAS  PubMed  Google Scholar 

  • Naidu R, Channey R, McConnell S, Johnston N, Semple KT, McGrath S, Dries V, Nathanail P, Harmsen J, Pruszinski A, MacMillan J, Palanisami T (2015) Towards bioavailability-based soil criteria: past, present and future perspectives. Environ Sci Pollut Res 22:8779–8785

    Article  Google Scholar 

  • NRC Committee (2003) NRC Committee on Bioavailability of Contaminants in Soils and Sediments. Bioavailability of contaminants in soils and sediments: processes, tools and applications. The National Academic Press, Washington, DC

    Google Scholar 

  • Ortega-Calvo JJ, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, Eadsforth C, Galay-Burgos M, Naidu R, Oliver R, Peijnenburg W, Rombke J, Streck G, Versonnen B (2015) From bioavailability science to regulation of organic chemicals. Environ Sci Technol 49:10255–10264

    Article  CAS  PubMed  Google Scholar 

  • Reichenberg F, Mayer P (2006) Two complementary sides of bioavailability: accessibility and chemical activity of organic contaminants in sediments and soils. Environ Toxicol Chem 25:1239–1245

    Article  CAS  PubMed  Google Scholar 

  • Rein A, Adam IKU, Miltner A, Brumme K, Kastner M, Trapp S (2016) Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-model simulations for prediction of bioremediation success. J Hazard Mater 306:105–114

    Article  CAS  PubMed  Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2017) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Semple KT, Doick KJ, Jones KC, Burauel P, Craven A, Harms H (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    Article  CAS  PubMed  Google Scholar 

  • Soil Quality Requirements and Guidance for the Selection and Application of Methods for the Assessment of Bioavailability of Contaminants in Soil and Soil Materials (2008) ISO No. 17402; International Organization for Standardization: Geneva, Switzerland, http://www.iso.org/iso/catalogue_detail.htm?csnumber=38349

  • Thullner M, Kampara M, Harms H, Wick LY (2008) Impact of bioavailability restrictions on microbially induced stable isotope fractionation: 1. Theoretical calculation. Environ Sci Technol 42:6544–6551

    Google Scholar 

  • Tros ME, Bosma TNP, Schraa G, Zehnder AJB (1996) Measurement of minimum substrate concentration (S-min) in a recycling fermenter and its prediction from the kinetic parameters of Pseudomonas sp. strain B13 from batch and chemostat cultures. Appl Environ Microbiol 62:3655–3661

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influences of interfaces on microbial activity. Microbiol Rev 54:75–87

    PubMed  PubMed Central  Google Scholar 

  • van Uden N (1967) Transport-limited fermentation in the chemostat and its competitive inhibition: a theoretical treatment. Arch Mikrobiol 58:145–154

    Article  PubMed  Google Scholar 

  • Wick LY, Colangelo T, Harms H (2001) Kinetics of mass-transfer-limited growth on solid PAHs. Environ Sci Technol 35:354–361

    Article  CAS  PubMed  Google Scholar 

  • Wick LY, de Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Biotechnol Microbiol 58:378–385

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Y. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harms, H., Smith, K.E.C., Wick, L.Y. (2018). Problems of Hydrophobicity/Bioavailability: An Introduction. In: Krell, T. (eds) Cellular Ecophysiology of Microbe: Hydrocarbon and Lipid Interactions. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-50542-8_38

Download citation

Publish with us

Policies and ethics