Skip to main content

Improving CO2 Fixation by Enhancing Rubisco Performance

  • Chapter
  • First Online:
Directed Enzyme Evolution: Advances and Applications

Abstract

The photosynthetic enzyme linking the inorganic and organic phases of the biosphere is ribulose-1,5-bisphosphate [RuBP] carboxylase/oxygenase (Rubisco). The complicated catalytic chemistry of Rubisco slows its CO2 fixation rate, allows for competitive inhibition by oxygen and permits the production of misfire products that can self-inhibit activity. Significant effort has been invested into better understanding the structure-function details of Rubisco as improving its performance is recognised as a viable means to enhance the photosynthetic efficiency and yield potential of crops. While rational design approaches have still been unable to provide catalysis enhancing solutions, modern directed evolution tools are posing a promising conduit to improving Rubisco. Advances in the design of effective selection systems for mutagenic Rubisco library screening have strategically increased their focus on using Escherichia coli. The inherent sensitivity of E. coli viability to the pentose sugar substrate of Rubisco, RuBP, is being exploited in an increasingly effective manner to select for Rubisco mutants with increased activity. Here we review the differing directed evolution technologies used to evolve Rubisco, examine the merits of available high-throughput Rubisco-dependent E. coli (RDE) selection systems and postulate approaches for improving their functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen JF, de Paula WBM, Puthiyaveetil S, Nield J (2011) A structural phylogenetic map for chloroplast photosynthesis. Trends Plant Sci 16(12):645–655

    Article  CAS  PubMed  Google Scholar 

  2. Alonso H, Blayney MJ, Beck JL, Whitney SM (2009) Substrate-induced assembly of Methanococcoides burtonii D-ribulose-1, 5-bisphosphate carboxylase/oxygenase dimers into decamers. J Biol Chem 284(49):33876–33882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amichay D, Levitz R, Gurevitz M (1993) Construction of a Synechocystis PCC6803 mutant suitable for the study of variant hexadecameric ribulose bisphosphate carboxylase/oxygenase enzymes. Plant Mol Biol 23:465–476

    Article  CAS  PubMed  Google Scholar 

  4. Andersson I, Backlund A (2008) Structure and function of Rubisco. Plant Physiol Biochem 46(3):275–291

    Article  CAS  PubMed  Google Scholar 

  5. Andralojc PJ, Madgwick PJ, Tao Y, Keys A, Ward JL, Beale MH, Loveland JE, Jackson PJ, Willis AC, Gutteridge S, Parry MAJ (2012) 2-Carboxy-D-arabinitol 1-phosphate (CA1P) phosphatase: evidence for a wider role in plant Rubisco regulation. Biochem J 442:733–742

    Article  CAS  PubMed  Google Scholar 

  6. Andrews TJ, Whitney SM (2003) Manipulating ribulose bisphosphate carboxylase/oxygenase in the chloroplasts of higher plants. Arch Biochem Biophys 414(2):159–169

    Article  Google Scholar 

  7. Bai C, Guo P, Zhao Q, Lv Z, Zhang S, Gao F, Gao L, Wang Y, Tian Z, Wang J, Yang F, Liu C (2015) Protomer roles in chloroplast chaperonin assembly and function. Mol Plant 8(10):1478–1492

    Article  CAS  PubMed  Google Scholar 

  8. Cai Z, Liu G, Zhang J, Li Y (2014) Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco. Protein Cell 5(7):552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carmo-Silva E, Scales JC, Madgwick PJ, Parry MAJ (2015) Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38(9):1817–1832

    Article  CAS  PubMed  Google Scholar 

  10. Cleland WW, Andrews TJ, Gutteridge S, Hartman FC, Lorimer GH (1998) Mechanism of Rubisco – the carbamate as general base. Chem Rev 98(2):549–561

    Article  CAS  PubMed  Google Scholar 

  11. Cloney LP, Bekkaoui DR, Hemmingsen SM (1993) Co-expression of plastid chaperonin genes and a synthetic plant Rubisco operon in Escherichia coli. Plant Mol Biol 23(6):1285–1290

    Article  CAS  PubMed  Google Scholar 

  12. Cobb RE, Sun N, Zhao H (2013) Directed evolution as a powerful synthetic biology tool. Methods 60(1):81–90

    Article  CAS  PubMed  Google Scholar 

  13. Currin A, Swainston N, Day PJ, Kell DB (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44(5):1172–1239

    Article  CAS  PubMed  Google Scholar 

  14. Durão P, Aigner H, Nagy P, Mueller-Cajar O, Hartl FU, Hayer-Hartl M (2015) Opposing effects of folding and assembly chaperones on evolvability of Rubisco. Nat Chem Biol 11(2):148–155

    Article  PubMed  Google Scholar 

  15. Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci 105(44):17199–17204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4(4):241–244

    Article  CAS  Google Scholar 

  17. Evans JR (2013) Improving photosynthesis. Plant Physiol 162(4):1780–1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ezaki S, Maeda N, Kishimoto T, Atomi H, Imanaka T (1999) Presence of a structurally novel type Ribulose-bisphosphate carboxylase/oxygenase in the hyperthermophilic Archaeon,Pyrococcus kodakaraensis KOD1. J Biol Chem 274(8):5078–5082. doi:10.1074/jbc.274.8.5078

    Article  CAS  PubMed  Google Scholar 

  19. Falcone DL, Tabita FR (1991) Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) genes in a Rubisco deletion mutant of Rhodobacter sphaeroides. J Bacteriol 173(6):2099–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Farquhar G, von Caemmerer Sv, Berry J (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149 (1):78–90

    Google Scholar 

  21. Feiz L, Williams-Carrier R, Wostrikoff K, Belcher S, Barkan A, Stern DB (2012) Ribulose-1,5-bis-phosphate carboxylase/oxygenase accumulation factor1 is required for holoenzyme assembly in maize. Plant Cell 24(8):3435–3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Finn MW, Tabita FR (2004) Modified pathway to synthesize ribulose 1,5-bisphosphate in methanogenic archaea. J Bacteriol 186(19):6360–6366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Furbank RT, Quick WP, Sirault XRR (2015) Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: prospects, progress and challenges. Field Crop Res 182:19–29

    Article  Google Scholar 

  24. Goloubinoff P, Gatenby AA, Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337(6202):44–47

    Article  CAS  PubMed  Google Scholar 

  25. Gready J, Kannappan B, Agrawal A, Street K, Stalker DM, Whitney S (2013) Status of options for improving photosynthetic capacity through promotion of Rubisco performance: Rubisco natural diversity and re-engineering, and other parts of C3 pathways. Paper presented at the Proceedings of a workshop held at the Australian National University, Canberra, Australian Capital Territory, Australia, 2–4 Sept 2009

    Google Scholar 

  26. Greene DN, Whitney SM, Matsumura I (2007) Artificially evolved Synechococcus PCC6301 Rubisco variants exhibit improvements in folding and catalytic efficiency. Biochem J 404(3):517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Groß M, Robinson CV, Mayhew M, Hartl FU, Radford SE (1996) Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling. Proc Sci 5(12):2506–2513

    Article  Google Scholar 

  28. Hartman FC, Harpel MR (1994) Structure, function, regulation, and assembly of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Annu Rev Biochem 63:197–234

    Article  CAS  PubMed  Google Scholar 

  29. Hasse D, Larsson AM, Andersson I (2015) Structure of Arabidopsis thaliana Rubisco activase. Acta Crystallogr Sect D: Biol Crystallogr 71(Pt 4):800–808

    Article  CAS  Google Scholar 

  30. Hauser T, Popilka L, Hartl FU, Hayer-Hartl M (2015) Role of auxiliary proteins in Rubisco biogenesis and function. Nat Plants 1

    Google Scholar 

  31. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41(1):62–76. doi:10.1016/j.tibs.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  32. Hudson GS, Morell MK, Arvidsson YBC, Andrews TJ (1992) Synthesis of spinach phosphoribulokinase and ribulose 1, 5-bisphosphate in Escherichia coli. Aust J Plant Physiol 19:213–221

    Article  CAS  Google Scholar 

  33. Hwang S-R, Tabita FR (1989) Cloning and expression of the chloroplast-encoded rbcL and rbcS genes from the marine diatom Cylindrotheca sp. strain N1. Plant Mol Biol 13:69–79

    Article  CAS  PubMed  Google Scholar 

  34. Irani M, Maitra P (1974) Isolation and characterization of Escherichia coli mutants defective in enzymes of glycolysis. Biochem Biophys Res Commun 56(1):127–133

    Article  CAS  PubMed  Google Scholar 

  35. Jiao Z, Baba T, Mori H, Shimizu K (2003) Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. FEMS Microbiol Lett 220(2):295–301

    Article  CAS  PubMed  Google Scholar 

  36. Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD (2001) Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiologica 147(12):3241–3247

    CAS  Google Scholar 

  38. Kitano K, Maeda N, Fukui T, Atomi H, Imanaka T, Miki K (2001) Crystal structure of a novel-type archaeal rubisco with pentagonal symmetry. Structure 9(6):473–481

    Article  CAS  PubMed  Google Scholar 

  39. Klenk C, Ehrenmann J, Schütz M, Plückthun A (2016) A generic selection system for improved expression and thermostability of G protein-coupled receptors by directed evolution. Sci Rep 6:28133

    Article  Google Scholar 

  40. Kreel NE, Tabita FR (2015) Serine 363 of a hydrophobic region of Archaeal Ribulose 1,5-bisphosphate carboxylase/oxygenase from Archaeoglobus fulgidus and Thermococcus kodakaraensis affects CO2/O2 substrate specificity and oxygen sensitivity. PLoS ONE 10(9):e0138351

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu GH (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19(10):3230–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leggat W, Whitney S, Yellowlees D (2004) Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis 37(1–3):137–153

    CAS  Google Scholar 

  43. Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463(7278):197–202

    Article  CAS  PubMed  Google Scholar 

  44. Liu J-W, Boucher Y, Stokes HW, Ollis DL (2006) Improving protein solubility: the use of the Escherichia coli dihydrofolate reductase gene as a fusion reporter. Protein Expr Purif 47(1):258–263

    Article  CAS  PubMed  Google Scholar 

  45. Long Stephen P, Marshall-Colon A, Zhu X-G (2015) Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161(1):56–66

    Article  CAS  PubMed  Google Scholar 

  46. Morell MK, Paul K, Kane HJ, Andrews TJ (1992) Rubisco: maladapted or misunderstood? Aust J Bot 40:431–441

    Article  CAS  Google Scholar 

  47. Mueller-Cajar O, Morell M, Whitney SM (2007) Directed evolution of Rubisco in Escherichia coli reveals a specificity-determining hydrogen bond in the form II enzyme. Biochemist 46(49):14067–14074

    Article  CAS  Google Scholar 

  48. Mueller-Cajar O, Stotz M, Bracher A (2014) Maintaining photosynthetic CO2 fixation via protein remodelling: the Rubisco activases. Photosynth Res 119(1–2):191–201

    Article  CAS  PubMed  Google Scholar 

  49. Mueller-Cajar O, Stotz M, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M (2011) Structure and function of the AAA+ protein CbbX, a red-type Rubisco activase. Nature 479(7372):194–199

    Article  CAS  PubMed  Google Scholar 

  50. Mueller-cajar O, Whitney SM (2008) Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research. Photosynth Res 98(1–3):667–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mueller-Cajar O, Whitney SM (2008) Evolving improved Synechococcus Rubisco functional expression in Escherichia coli. Biochem J 414(2):205–214

    Article  CAS  PubMed  Google Scholar 

  52. Parikh MR, Greene DN, Woods KK, Matsumura I (2006) Directed evolution of Rubisco hypermorphs through genetic selection in engineered E. coli. Protein Eng Des Sel 19(3):113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64(3):717–730

    Article  CAS  PubMed  Google Scholar 

  54. Pellicer MT, Nunez MF, Aguilar J, Badia J, Baldoma L (2003) Role of 2-phosphoglycolate phosphatase of Escherichia coli in metabolism of the 2-phosphoglycolate formed in DNA repair. J Bacteriol 185(19):5815–5821

    Article  CAS  Google Scholar 

  55. Portis AR, Li CS, Wang DF, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59(7):1597–1604

    Article  CAS  PubMed  Google Scholar 

  56. Price GD, Evans JR, von Caemmerer S, Yu J-W, Badger MR (1995) Specific reduction of chloroplast glyceraldehyde-3-phosphate dehydrogenase activity by antisense RNA reduces CO2 assimilation via a reduction in ribulose bisphosphate regeneration in transgenic tobacco plants. Planta 195:369–378

    Article  CAS  PubMed  Google Scholar 

  57. Price GD, Howitt SM (2014) Plant science: towards turbocharged photosynthesis. Nature 513(7519):497–498

    Article  CAS  PubMed  Google Scholar 

  58. Sakikawa C, Taguchi H, Makino Y, Yoshida M (1999) On the maximum size of proteins to stay and fold in the cavity of GroEL underneath GroES. J Biol Chem 274(30):21251–21256

    Article  CAS  PubMed  Google Scholar 

  59. Satagopan S, Chan S, Perry LJ, Tabita FR (2014) Structure-function studies with the unique hexameric Form II ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) from Rhodopseudomonas palustris. J Biol Chem 289(31):21433–21450

    Article  PubMed  PubMed Central  Google Scholar 

  60. Satagopan S, Scott SS, Smith TG, Tabita FR (2009) A Rubisco mutant that confers growth under a normally “inhibitory” oxygen concentration. Biochemist 48(38):9076–9083

    Article  CAS  Google Scholar 

  61. Satagopan S, Spreitzer RJ (2004) Substitutions at the Asp-473 Latch Residue of Chlamydomonas ribulosebisphosphate carboxylase/oxygenase cause decreases in carboxylation efficiency and CO2/O2 specificity. J Biol Chem 279(14):14240–14244

    Article  CAS  PubMed  Google Scholar 

  62. Satagopan S, Tabita FR (2016) RubisCO selection using the vigorously aerobic and metabolically versatile bacterium Ralstonia eutropha. FEBS J 283:2869–2880

    Article  CAS  PubMed  Google Scholar 

  63. Sato T, Atomi H, Imanaka T (2007) Archaeal type III RuBisCOs function in a pathway for AMP metabolism. Science 315(5814):1003–1006

    Article  CAS  PubMed  Google Scholar 

  64. Savir Y, Noor E, Milo R, Tlusty T (2010) Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc Natl Acad Sci 107(8):3475–3480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Seta FD, Boschi-Muller S, Vignais M, Branlant G (1997) Characterization of Escherichia coli strains with gapA and gapB genes deleted. J Bacteriol 179(16):5218–5221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sharwood R, von Caemmerer S, Maliga P, Whitney S (2008) The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol 146:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharwood RE, Ghannoum O, Whitney SM (2016) Prospects for improving CO2 fixation in C3-crops through understanding C4-Rubisco biogenesis and catalytic diversity. Curr Opin Plant Biol 31:135–142

    Article  CAS  PubMed  Google Scholar 

  68. Sharwood RE, Sonawane BV, Ghannoum O, Whitney SM (2016) Improved analysis of C4 and C3 photosynthesis via refined in vitro assays of their carbon fixation biochemistry. J Exp Bot 67(10):3137–3148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Smith SA, Tabita FR (2003) Positive and negative selection of mutant forms of prokaryotic (cyanobacterial) ribulose-1, 5-bisphosphate carboxylase/oxygenase. J Mol Biol 331(3):557–569

    Article  CAS  PubMed  Google Scholar 

  70. Solaiman DK, Swingle BM, Ashby RD (2010) A new shuttle vector for gene expression in biopolymer-producing Ralstonia eutropha. J Microbiol Methods 82(2):120–123

    Article  CAS  PubMed  Google Scholar 

  71. Soo VW, Hanson-Manful P, Patrick WM (2011) Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli. Proc Natl Acad Sci 108(4):1484–1489

    Article  CAS  PubMed  Google Scholar 

  72. Stemmer WPC (1994) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci 91:10747–10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Hartl FU, Bracher A, Hayer-Hartl M (2011) Structure of green-type Rubisco activase from tobacco. Nat Struct Mol Biol 18(12):1366–1370

    Article  CAS  PubMed  Google Scholar 

  74. Tabita FR, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the Rubisco-like proteins and their Rubisco homologs. Microbiol Mol Biol Rev 71(4):576–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tamoi M, Miyazaki T, Fukamizo T, Shigeoka S (2005) The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. Plant J 42(4):504–513

    Article  CAS  PubMed  Google Scholar 

  76. Tcherkez GGB, Farquhar GD, Andrews TJ (2006) Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized. Proc Natl Acad Sci 103:7246–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsai YC, Lapina MC, Bhushan S, Mueller-Cajar O (2015) Identification and characterization of multiple rubisco activases in chemoautotrophic bacteria. Nat Commun 6:8883. doi:10.1038/ncomms9883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsai YC, Mueller-Cajar O, Saschenbrecker S, Hartl FU, Hayer-Hartl M (2012) Chaperonin cofactors, Cpn10 and Cpn20, of green algae and plants function as hetero-oligomeric ring complexes. J Biol Chem 287(24):20471–20481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vitlin Gruber A, Nisemblat S, Azem A, Weiss C (2013) The complexity of chloroplast chaperonins. Trends Plant Sci 18(12):688–694

    Article  CAS  PubMed  Google Scholar 

  80. Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460(7257):894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Whitney SM, Andrews TJ (1998) The CO2/O2 specificity of single-subunit ribulose-bisphosphate carboxylase from the dinoflagellate, Amphidinium carterae. Aust J Plant Physiol 25(2):131–138

    Article  CAS  Google Scholar 

  82. Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proc Natl Acad Sci 98(25):14738–14743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Whitney SM, Baldet P, Hudson GS, Andrews TJ (2001) Form I Rubiscos from non-green algae are expressed abundantly but not assembled in tobacco chloroplasts. Plant J 26(5):535–547

    Article  CAS  PubMed  Google Scholar 

  84. Whitney SM, Birch R, Kelso C, Beck JL, Kapralov MV (2015) Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone. Proc Natl Acad Sci 112(11):3564–3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Whitney SM, Houtz RL, Alonso H (2011) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155(1):27–35

    Article  CAS  PubMed  Google Scholar 

  86. Whitney SM, Sharwood RE (2008) Construction of a tobacco master line to improve Rubisco engineering in chloroplasts. J Exp Bot 59(7):1909–1921

    Article  CAS  PubMed  Google Scholar 

  87. Whitney SM, Sharwood RE (2014) Plastid transformation for Rubisco engineering and protocols for assessing expression. Methods Mol Biol 1132:245–262

    Article  CAS  PubMed  Google Scholar 

  88. Wilson R, Whitney S (2015) Photosynthesis: getting it together for CO2 fixation. Nat Plants 1:15130

    Article  CAS  PubMed  Google Scholar 

  89. Wilson RH, Alonso H, Whitney SM (2016) Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth. Sci Report 6:22284

    Article  CAS  Google Scholar 

  90. Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151(4):2073–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yoshida S, Atomi H, Imanaka T (2007) Engineering of a type III rubisco from a hyperthermophilic archaeon in order to enhance catalytic performance in mesophilic host cells. Appl Environ Microbiol 73(19):6254–6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM (2016) Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. J Exp Bot 67(11):3445–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhu X-G, Kurek I, Liu L (2010) Engineering photosynthetic enzymes involved in CO2-assimilation by gene shuffling. In: Rebeiz C, Benning C, Bohnert H et al (eds) Advances in photosynthesis and respiration, The chloroplast, vol 31. Springer, Dordrecht, pp 307–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer M. Whitney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wilson, R.H., Whitney, S.M. (2017). Improving CO2 Fixation by Enhancing Rubisco Performance. In: Alcalde, M. (eds) Directed Enzyme Evolution: Advances and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-50413-1_4

Download citation

Publish with us

Policies and ethics