Skip to main content

Water Structuring at Non-Polar Fluid Interfaces

  • Conference paper
  • First Online:
Quantum Systems in Physics, Chemistry, and Biology

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 30))

  • 1182 Accesses

Abstract

The structuring of water molecules at the water/vapour interface is an object of scientific interest for decades. After the first successful attempts to explore liquid water with the help of theoretical chemistry, the number of studies on this topic grows progressively. Most of them are focused on bulk water but there is still need of a more detailed research on surface water. In addition, interfaces with alkanes are interesting as being instructive from both biological and industrial perspectives. Since in both bio- and industrial applications water/air and water/oil interfaces are mediated by amphiphiles, the role of a surfactant monolayer on surface water structuring deserves more attention as well. In the present study several atomistic water models were chosen—non-polarisable (SPC, TIP3P, and TIP4P) and polarisable (SW-RIGID-ISO, SWM4-NDP, and COS/G2) and classical molecular dynamics simulations were carried out on bulk water, water/vapour and water/alkane (from pentane to nonane) systems, as well as on water/DLPC/vapour and water/DLPC/octane models. In all cases the temperature was kept at 298 K. Several structural properties of bulk and surface layers were examined by means of radial distribution functions and Voronoi analysis. Dipole moments, surface tension and hydrogen bonding were addressed too. The objective was to estimate the impact of accounting for polarisability on the water properties of interest and to select a cost-efficient water model for describing them, as well as to add new data to the existing knowledge about interfacial water structuring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finney JL (2001) J Mol Liq 90:303–312

    Article  CAS  Google Scholar 

  2. Finney JL (2004) Philos Trans R Soc London 359:1471–2970

    Google Scholar 

  3. Ball P (2001) Life’s matrix. A biography of water. University of California Press, Berkeley

    Google Scholar 

  4. Maréchal Y Hydrogen (2007) Bond and the water molecule: the physics and chemistry of water, aqueous and bio-media. Elsevier, Amsterdam

    Google Scholar 

  5. Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund LA, Hirsch TK, Ojamae L, Glatzel P, Pettersson LGM, Nilsson A (2004) Science 304:995–999

    Article  CAS  Google Scholar 

  6. Clark GNI, Cappa CD, Smith JD, Saykally RJ, Head-Gordon T (2010) Mol Phys 108:1415–1433

    Article  CAS  Google Scholar 

  7. Nilsson A, Pettersson LGM (2011) Chem Phys 389:1–34

    Article  CAS  Google Scholar 

  8. Huang C, Wikfeldt KT, Tokushima T, Nordlund D, Harada Y, Bergmann U, Niebuhr M, Weiss TM, Horikawa Y, Leetmaa M, Ljungberg MP, Takahashi O, Lenz A, Ojamae L, Lyubartsev AP, Shin S, Pettersson LGM, Nilsson A (2008) Proc Natl Acad Sci USA 106:15214–15218

    Article  Google Scholar 

  9. Walrafen GE (1964) J Chem Phys 40:3249–3256

    Article  CAS  Google Scholar 

  10. Walrafen GE (1967) J Chem Phys 47:114–126

    Article  CAS  Google Scholar 

  11. Monosmith B, Walrafen GE (1984) J Chem Phys 81:669–674

    Article  CAS  Google Scholar 

  12. Mizoguchi K, Hori Y, Tominaga Y (1992) J Chem Phys 97:1961–1968

    Article  CAS  Google Scholar 

  13. Lock AJ, Bakker HJ (2002) J Chem Phys 117:1708–1713

    Article  CAS  Google Scholar 

  14. Narten AH, Levy HA (1972) Water a comprehensive treatise, Liquid water: scattering of X-rays, USA

    Google Scholar 

  15. Page DI, Water a comprehensive treatise, USA, 1972

    Google Scholar 

  16. Narten AH, Thiessen WE, Blum L (1982) Science 217:1033–1034

    Article  CAS  Google Scholar 

  17. Yamanaka K, Yamaguchi T, Wakita H (1994) J Chem Phys 101:9830–9836

    Article  CAS  Google Scholar 

  18. Hura G, Sorenson JM, Glaeser RM, Head-Gordon T (2000) J Chem Phys 113:9140–9148

    CAS  Google Scholar 

  19. Soper AK, Phillips MG (1986) Chem Phys 107:47–60

    Article  CAS  Google Scholar 

  20. Dore JC (1991) J Mol Struct 250:193–211

    Article  CAS  Google Scholar 

  21. Dore JC, Blakey DM (1995) J Mol Liq 65–66:85–90

    Article  Google Scholar 

  22. Soper AK (1997) J Phys: Condens Matter 9:2717–2730

    CAS  Google Scholar 

  23. Jedlovsky P, Brodholt JP, Bruni F, Ricci MA, Soper AK, Vallauri R (1998) J Chem Phys 108:8528–8540

    Article  Google Scholar 

  24. Soper AK (2000) ChemPhys 258:121–137

    CAS  Google Scholar 

  25. Nakahara M, Matubayasi N, Wakai C (2001) J Mol Liq 90:75–83

    Article  CAS  Google Scholar 

  26. McConnell HM (1991) Annu Rev Phys Chem 42:171–195

    Article  CAS  Google Scholar 

  27. Benjamin I (1996) Chem Rev 96:1449–1476

    Article  CAS  Google Scholar 

  28. Chandler D (2005) Nature 437:640–647

    Article  CAS  Google Scholar 

  29. http://www1.lsbu.ac.uk/water/

  30. KuoI-FW, Mundy CJ (2004) Science 303: 658–660

    Google Scholar 

  31. Miranda PB, Shen YR (1999) J Phys Chem B 103:3292–3307

    Article  CAS  Google Scholar 

  32. Braslau A, Deutsch M, Pershan PS, Weiss AH, Als-Nielsen J, Bohr J (1985) Phys Rev Lett 54:114–117

    Article  CAS  Google Scholar 

  33. Braslau A, Pershan PS, Swislow G, Ocko BM, Als-Nielsen J (1988) Phys Rev A 38:2457–2470

    Article  CAS  Google Scholar 

  34. Goh MC, Hicks JM, Kemnitz K, Pinto GR, Bhattacharyya K, Eisenthal KB, Heinz TF (1988) J Phys Chem 92:5074–5075

    Article  CAS  Google Scholar 

  35. Townsend RM, Rice SA (1991) J Chem Phys 94:2207–2218

    Article  CAS  Google Scholar 

  36. Du Q, Superfine R, Freysz E, Shen YR (1993) Phys Rev Lett 70:2313–2316

    Article  CAS  Google Scholar 

  37. Benjamin I (1994) Phys Rev Lett 73:2083–2086

    Article  CAS  Google Scholar 

  38. Morita A, Hynes JT (2000) Chem Phys 258:371–390

    Article  CAS  Google Scholar 

  39. Morita A, Hynes JT (2002) J Phys Chem B 106:673–685

    Article  CAS  Google Scholar 

  40. Brown MG, Raymond EA, Allen HC, Scatena LF, Richmond GL (2000) J Phys Chem A 104:10220–10226

    Article  CAS  Google Scholar 

  41. Wei X, Shen YR (2001) Phys Rev Lett 86:4799–4802

    Article  CAS  Google Scholar 

  42. Wilson KR, Cavalleri M, Rude BS, Schaller RD, Nilsson A, Pettersson LGM, Goldman N, Catalano T, Bozek JD, Saykally RJ (2002) J Phys: Condens Matter 14:L221–L226

    CAS  Google Scholar 

  43. Perry A, Ahlborn H, Space B, Moore PB (2003) J Chem Phys 118:8411–8419

    Article  CAS  Google Scholar 

  44. Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Science 301:1698–1702

    Article  CAS  Google Scholar 

  45. Paul S, Chandra A (2003) Chem Phys Lett 373:87–93

    Article  CAS  Google Scholar 

  46. Paul S, Chandra A (2004) Chem Phys Lett 386:218–224

    Article  CAS  Google Scholar 

  47. Sun CQ, Zhang X, Zhou J, Huang Y, Zhou Y, Zheng W (2013) J Phys Chem Lett 4:2565–2570

    Article  CAS  Google Scholar 

  48. Zhang X, Huang Y, Ma Z, Zhou Y, Zheng W, Zhou J, Sun CQ (2014) Phys Chem Chem Phys 16:22987–22994

    Article  CAS  Google Scholar 

  49. Gan W, Wu D, Zhang Z, Guo Y, Wan H (2006) Chinese J Chem Phys 19:20–24

    Article  CAS  Google Scholar 

  50. Weyl WA (1951) J Colloid Sci 6:389–405

    Article  CAS  Google Scholar 

  51. Stillinger FH, Ben-Nairn A (1967) J Chem Phys 47:4431–4437

    Article  CAS  Google Scholar 

  52. Fletcher NH (1968) Philos Mag 18:1287–1300

    Article  CAS  Google Scholar 

  53. Croxton CA (1981) Phys A 106:239–259

    Article  Google Scholar 

  54. Kuo IFW, Mundy CJ, Eggimann BL, McGrath MJ, Siepmann JI, Chen B, Vieceli J, Tobias DJ (2006) J Phys Chem B 110:3738–3746

    Article  Google Scholar 

  55. Kessler J, Elgabarty H, Spura T, Karhan K, Partovi-Azar P, Hassanali AA, Kühne TD (2015) J Phys Chem B 119:10079–10086

    Article  CAS  Google Scholar 

  56. Lee CY, McCammon JA, Rossky P (1984) J Chem Phys 80:4448–4455

    Google Scholar 

  57. Wilson MA, Pohorille A, Pratt LR (1987) J Phys Chem 91:4873–4878

    Article  CAS  Google Scholar 

  58. Matsumoto M, Kataoka Y (1988) J Chem Phys 88:3233–3245

    Article  CAS  Google Scholar 

  59. Walker DS, Hore DK, Richmond GL (2006) J Phys Chem B 110:20451–20459

    Article  CAS  Google Scholar 

  60. Wilson KR, Schaller RD, Co DT, Saykally RJ, Rude BS, Catalano T, Bozek JD (2002) J Chem Phys 117:7738–7744

    Article  CAS  Google Scholar 

  61. Fan Y, Chen X, Yang L, Cremer PlS, Gao YQ (2009) J Phys Chem B 113:11672–11679

    Article  CAS  Google Scholar 

  62. Cipcigan FS, Sokhan VP, Jones AP, Crain J, Martyna GJ (2015) Phys Chem Chem Phys 17:8660–8669

    Article  CAS  Google Scholar 

  63. Richmond G (2002) Chem Rev 102:2693–2724

    Article  CAS  Google Scholar 

  64. Benjamin I (1997) Annu Rev Phys Chem 48:407–451

    Article  CAS  Google Scholar 

  65. Pratt L, Pohorille A (2002) Chem Rev 102:2671–2692

    Article  CAS  Google Scholar 

  66. Watry MR, Tarbuck TL, Richmond GL (2003) J Phys Chem B 107:512–518

    Article  CAS  Google Scholar 

  67. Sokhan VP, Jones AP, Cipcigan FS, Crain J, Martyn GJ (2015) PNAS 112:6341–6346

    Article  CAS  Google Scholar 

  68. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Profetajr S, Wiener P (1984) J Am Chem Soc 106(106):765–784

    Article  CAS  Google Scholar 

  69. Brooks CL, Brucoleri RE, Olafson BD, Slater DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4(4):187–217

    Article  CAS  Google Scholar 

  70. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701–1718

    Article  Google Scholar 

  71. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  72. Miyamoto S, Kollman PA (1992) J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  73. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) J Comput Chem 24:1999–2012

    Article  CAS  Google Scholar 

  74. Humphrey W, Dalke A, Schulten K, Molec J (1996) Graphics 14:33–38

    Article  CAS  Google Scholar 

  75. Rycroft CH (2007) Multiscale modeling in granular flow. Ph.D. thesis, Massachusetts Institute of Technology

    Google Scholar 

  76. http://www.engineeringtoolbox.com/water-density-specific-weight-d_595.html

  77. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  78. van Maaren P, van der Spoel D (2001) J Phys Chem B 105:2618–2626

    Article  Google Scholar 

  79. Yu H, van Gunsteren WF (2004) J Chem Phys 121:9549–9564

    Article  CAS  Google Scholar 

  80. Bret C, Field MJ, Hemmingsen L (2000) Mol Phys 95:751–763

    Article  Google Scholar 

  81. Voronoi GF (1908) J Reine Angew Math 134:198–287

    Google Scholar 

  82. Ruocco G, Sampoli M, Vallauri R (1992) J Chem Phys 96:6167–6176

    Article  CAS  Google Scholar 

  83. Ruocco G, Sampoli M, Torcini A, Vallauri R (1993) J Chem Phys 99:8095–8104

    Article  CAS  Google Scholar 

  84. Shih JP, Sheu SY, Mou CY (1994) J Chem Phys 100:2202–2212

    Article  CAS  Google Scholar 

  85. Yeh Y, Mou C-Y (1999) J Phys Chem B 103:3699–3705

    Article  CAS  Google Scholar 

  86. Jedlovszky P (1999) J Chem Phys 111:5975–5985

    Article  CAS  Google Scholar 

  87. Jhon YI, No KT, Jhon JS (2006) Fluid Phase Equilibria 244:160–166

    Article  CAS  Google Scholar 

  88. Jedlovszky P, Pártay LB, Bartók AP, Voloshin VP, Medvedev NN, Garberoglio G, Vallauri R (2008) J Chem Phys 128:244503–244512

    Article  Google Scholar 

  89. Chaplin MF (2000) Biophys Chem 83:211–221

    Article  CAS  Google Scholar 

  90. Müller A, Bögge H, Diemann E (2003) Inorg Chem Commun 6:52–53

    Article  Google Scholar 

  91. Garcia-Ratés M, Miró P, Poblet JM, Bo C, Avalo JB (2011) J Phys Chem B 115:5980–5992

    Article  Google Scholar 

  92. Bednyakov AS, Stepanov NF, Novakovskaya YV (2014) Russian J Phys Chem A88:287–294

    Article  Google Scholar 

  93. Gubskaya AV, Kusalik PG (2002) J Chem Phys 117:5290–5302

    Article  CAS  Google Scholar 

  94. Kiyohara K, Gubbins KE, Panagiotopoulos AZ (1998) Mol Phys 94:803–808

    Article  CAS  Google Scholar 

  95. Mahoney MW, Jorgensen WL (2000) J Chem Phys 112:8910–8922

    Article  CAS  Google Scholar 

  96. Harris JG (1992) J Phys Chem 96:5077–5086

    Article  CAS  Google Scholar 

  97. Chen F, Smith PE (2007) J Chem Phys 126:221101–221103

    Article  Google Scholar 

  98. Pallas NR, Harrison Y (1990) Colloid Surf 43:169–194

    Article  CAS  Google Scholar 

  99. Matsubara H, Murase M, Mori YH, Nagashima A (1988) Int J Thermophys 9:409–424

    Article  CAS  Google Scholar 

  100. Mitrinovic DM, Tikhonov AM, Li M, Huang ZQ, Schlossman ML (2000) Phys Rev Lett 85:582–585

    Article  CAS  Google Scholar 

  101. Xenides D, Randolf BR, Rode BM (2006) J Mol Liq 123:61–67

    Article  CAS  Google Scholar 

  102. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1637–1641

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alia Tadjer .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1085 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Tsoneva, Y., Tadjer, A. (2017). Water Structuring at Non-Polar Fluid Interfaces. In: Tadjer, A., Pavlov, R., Maruani, J., Brändas, E., Delgado-Barrio, G. (eds) Quantum Systems in Physics, Chemistry, and Biology. Progress in Theoretical Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-50255-7_7

Download citation

Publish with us

Policies and ethics