Skip to main content

Metal Complexes and Imprinted Polymers for Shape-Selective Catalysis

  • Chapter
  • First Online:
Effects of Nanoconfinement on Catalysis

Part of the book series: Fundamental and Applied Catalysis ((FACA))

  • 1205 Accesses

Abstract

Polymers provide a very interesting matrix for the development of specific functionalities. The incorporation of metal atom complexes in polymer systems using the molecular imprinting approach allows to achieve key specificities that could not otherwise be obtained. This chapter provides an overview of the latest achievements in terms of imprinted polymers containing metal atoms and their applications in the important field of catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danielsson B (2008) Artificial receptors. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 109. Springer, Berlin, pp 97–122

    Google Scholar 

  2. Kataev EA, Muller C (2014) Recent advances in molecular recognition in water: artificial receptors and supramolecular catalysis. Tetrahedron 70:137–167. doi:10.1016/j.tet.2013.11.010

    Article  CAS  Google Scholar 

  3. Mirsky VM, Yatsimirsky A (eds) (2010) Artificial receptors for chemical sensors. Wiley-VCH, Germany

    Google Scholar 

  4. Uzun L, Turner AP (2016) Molecularly-imprinted polymer sensors: realising their potential. Biosens Bioelectron 76:131–144. doi:10.1016/j.bios.2015.07.013

    Article  CAS  Google Scholar 

  5. Ramstrom O, Ansell RJ (1998) Molecular imprinting technology: challenges and prospects for the future. Chirality 10:195–209. doi:10.1002/(SICI)1520-636X(1998)10:3<195:AID-CHIR1>3.0.CO;2-9

    Article  CAS  Google Scholar 

  6. Kriz D, Mosbach K (1995) Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer. Anal Chim Acta 300:71–75. doi:10.1016/0003-2670(94)00368-V

    Article  CAS  Google Scholar 

  7. Bui BTS, Haupt K (2010) Molecularly imprinted polymers: synthetic receptors in bioanalysis. Anal Bioanal Chem 398:2481–2492. doi:10.1007/s00216-010-4158-x

    Article  CAS  Google Scholar 

  8. Gu Y, Yan X, Li C, Zheng B, Li Y, Liu W, Zhang Z, Yang M (2016) Biomimetic sensor based on molecularly imprinted polymer with nitroreductase-like activity for metronidazole detection. Biosens Bioelectron 77:393–399. doi:10.1016/j.bios.2015.09.060

    Article  CAS  Google Scholar 

  9. Matsui J, Nicholls IA, Mosbach K (1996) Carbon–Carbon bond formation using substrate selective catalytic polymers prepared by molecular imprinting: an artificial class II aldolase. J Org Chem 61:5414–5417. doi:10.1021/jo9516805

    Article  CAS  Google Scholar 

  10. Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102:1. doi:10.1021/cr980039a

    Article  CAS  Google Scholar 

  11. Liu JQ, Wulff G (2004) Molecularly imprinted polymers with strong carboxypeptidase A-like activity: combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities. Angew Chem Int Ed Engl 43(10):1287–1290. doi:10.1002/anie.200352770

    Article  CAS  Google Scholar 

  12. Czulak J, Jakubiak-Marcinkowska A, Trochimczuk A (2013) Polymer catalysts imprinted with metal ions as biomimics of metalloenzymes. Adv Mater Sci Eng. 2013, Article ID 464265. doi:10.1155/2013/464265 (Hindawi Publishing Corporation)

  13. Beller M, Bolm C (eds) (2004) Transition metals for organic synthesis: building blocks and fine chemicals, 2nd edn. Wiley-VCH. doi:10.1002/9783527619405

  14. Strikovsky AG, Kasper D, Grun M, Green BS, Hradil J, Wulff G (2000) Catalytic molecularly imprinted polymers using conventional bulk polymerization or suspension polymerization: selective hydrolysis of diphenyl carbonate and diphenyl carbamate. J Am Chem Soc 122(26):6295–6296. doi:10.1021/ja994269y

    Article  CAS  Google Scholar 

  15. Alexander C, Davidson L, Hayes W (2003) Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis. Tetrahedron 59:2025–2057. doi:10.1016/S0040-4020(03)00152-2

    Article  CAS  Google Scholar 

  16. Bonomi P, Servant A, Resmini M (2012) Modulation of imprinting efficiency in nanogels with catalytic activity in the Kemp elimination. J Mol Recogn 25(6):352–360. doi:10.1002/jmr.2180

    Article  CAS  Google Scholar 

  17. Resmini M (2012) Molecularly imprinted polymers as biomimetic catalysts. Anal Bioanal Chem 402(10):3021–3026. doi:10.1007/s00216-011-5671-2

    Article  CAS  Google Scholar 

  18. Chen Z, Hua Z, Wang J, Guan Y, Zhao M, Li Y (2007) Molecularly imprinted soluble nanogels as a peroxidase-like catalyst in the oxidation reaction of homovanillic acid under aqueous conditions. Appl Catal A 328(2):252–258. doi:10.1016/j.apcata.2007.05.040

    Article  CAS  Google Scholar 

  19. Toorisaka E, Uezu K, Goto M, Furusaki S (2003) A molecularly imprinted polymer that shows enzymatic activity. Biochem Eng J 14:85–91. doi:10.1016/S1369-703X(02)00155-9

    Article  CAS  Google Scholar 

  20. Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S (2000) Chiral-recognition polymer prepared by surface molecular imprinting technique. Colloids Surf A 169:259–269. doi:10.1016/S0927-7757(00)00468-4

  21. Yoshida M, Hatate Y, Uezu K, Goto M, Furusaki S (1999) Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions. J Appl Polym Sci 73(7):1223–1230. doi:10.1002/(SICI)1097-4628(19990815)73:7<1223:AID-APP16>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  22. Meng M, Bao L, He M, Sun K, Li W, Zhao D, Feng Y, Yan Y (2014) Preparation, characterization, and adsorption performance of p-hydroxybenzoic acid imprinted polymer and selective catalysis of toluene to para-chlorotoluene. J Appl Polym Sci 131(8):40118. doi:10.1002/app.40118

    Article  Google Scholar 

  23. Jia ZG, Liu JH, Wang QZ, Li SB, Qi Q, Zhu RS (2015) Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater. J Alloy Compd 622:587–595. doi:10.1016/j.jallcom.2014.10.125

    Article  CAS  Google Scholar 

  24. Ouasif H, Yousfi S, Bouamrani ML, Kouali M, Benmokhtar SM, Talbi M (2013) Removal of a cationic dye from wastewater by adsorption onto natural adsorbents. J Mater Environ Sci 4(1):1–10

    CAS  Google Scholar 

  25. Santhy K, Selvapathy P (2006) Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour Technol 97(11):1329–1336. doi:10.1016/j.biortech.2005.05.016

    Article  CAS  Google Scholar 

  26. Zhu M, Lee L, Wang H, Wang Z (2007) Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater 149(3):735–741. doi:10.1016/j.jhazmat.2007.04.037

    Article  CAS  Google Scholar 

  27. Oladoja NA, Aliu YD, Ofomaja AE (2011) Evaluation of snail shell as a coagulant aid in the alum precipitation of aniline blue from aqueous solution. Environ Technol 32(6):639–652. doi:10.1080/09593330.2010.509868

    Article  CAS  Google Scholar 

  28. Kumar SG, Devi LG (2011) Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 115:13211–13241. doi:10.1021/jp204364a

    Article  CAS  Google Scholar 

  29. Wang YS, Shen JH, Horng JJ (2014) Chromate enhanced visible light driven TiO2 photocatalytic mechanism on acid orange 7 photodegradation. J Hazard Mater 274:420–427. doi:10.1016/j.jhazmat.2014.04.042

    Article  CAS  Google Scholar 

  30. Gao J, Heeger AJ, Lee JY, Kim CY (1996) Soluble polypyrrole as the transparent anode in polymer light-emitting diodes. Synth Met 82(3):221. doi:10.1016/S0379-6779(96)03794-0

    Article  CAS  Google Scholar 

  31. Deng F, Li YX, Luo XB, Yang LX, Tu XM (2012) Preparation of conductive polypyrrole/TiO2 nanocomposite via surface molecular imprinting technique and its photocatalytic activity under simulated solar light irradiation. Colloids Surf A 395:183–189. doi:10.1016/j.colsurfa.2011.12.029

    Article  CAS  Google Scholar 

  32. Wei S, Hu X, Liu H, Wang Q, He C (2015) Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions. J Hazard Mater 294:168–176. doi:10.1016/j.jhazmat.2015.03.067

    Article  CAS  Google Scholar 

  33. Carboni D, Malfatti L, Pinna A, Lasio B, Tokudome Y, Takahashi M, Innocenzi P (2013) Molecularly imprinted La-doped mesoporous titania films with hydrolytic properties toward organophosphate pesticides. New J Chem 37:2995–3002. doi:10.1039/C3NJ00291H

    Article  CAS  Google Scholar 

  34. Jakubiak-Marcinkowska A, Legan M, Jezierska J (2013) Molecularly imprinted polymeric Cu(II) catalysts with modified active centres mimicking oxidation enzymes. J Polym Res 20:317. doi:10.1007/s10965-013-0317-z

    Article  Google Scholar 

  35. Li S, Luo Y, Whitcombeb MJ, Piletsky SA (2013) A successive-reaction nanoreactor made of active molecularly imprinted polymer containing Ag nanoparticles. J Mater Chem A 1:15102–15109. doi:10.1039/C3TA13454G

    Article  CAS  Google Scholar 

  36. Wang J, Zhu M, Shen X, Li S (2015) A cascade-reaction nanoreactor composed of a bifunctional molecularly imprinted polymer that contains pt nanoparticles. Chem Eur J 21(20):7532–7539. doi:10.1002/chem.201406285

    Article  CAS  Google Scholar 

  37. Zhang X, Zhu M, Li S (2014) “Key-vs.-Lock”-like polymer reactor made of molecularly imprinted polymer containing metal nanoparticles. J Inorg Organomet Polym 24:890–897. doi:10.1007/s10904-014-0061-9

    Article  CAS  Google Scholar 

  38. Sun W, Tan R, Zheng Yin D (2013) Molecularly imprinted polymer containing Fe(III) catalysts for specific substrate recognition. Chin J Catal 34(8):1589–1598. doi:10.1016/S1872-2067(12)60624-X

    Article  CAS  Google Scholar 

  39. Yang Y, Weng Z, Muratsugu S, Ishiguro N, Ohkoshi S, Tada M (2012) Inside cover: the excess electron in a boron nitride nanotube: pyramidal NBO charge distribution and remarkable first hyperpolarizability. Chem Eur J 18(36):1142–1153. doi:10.1002/chem.201290154

    Article  CAS  Google Scholar 

  40. Thomas JM, Raja R (2008) Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc Chem Res 41(6):708–720. doi:10.1021/ar700217y

    Article  CAS  Google Scholar 

  41. Capra A, Scicolone B (2004) Emitter and filter tests for wastewater reuse by drip irrigation. Agric Water Manage 68(2):135–149. doi:10.1016/j.agwat.2004.03.005

    Article  Google Scholar 

  42. Luo X, Deng F, Min L, Luo S, Guo B, Zeng G, Au C (2013) Facile one-step synthesis of inorganic-framework molecularly imprinted TiO2/WO3 nanocomposite and its molecular recognitive photocatalytic degradation of target contaminant. Environ Sci Technol 47:7404–7412. doi:10.1021/es4013596

    CAS  Google Scholar 

  43. Denga F, Liua Y, Luoa X, Wua S, Luoa S, Auc C, Qia R (2014) Sol-hydrothermal synthesis of inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite and its preferential photocatalytic degradation towards target contaminant. J Hazard Mater 278:108–115. doi:10.1016/j.jhazmat.2014.05.088

    Article  Google Scholar 

  44. Shen X, Zhu L, Wang N, Zhang T, Tang H (2014) Selective photocatalytic degradation of nitrobenzene facilitated by molecular imprinting with a transition state analog. Catal Today 225:164–170. doi:10.1016/j.cattod.2013.07.011

    Article  CAS  Google Scholar 

  45. Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116(9):5764–5772. doi:10.1021/jp211222w

    Article  CAS  Google Scholar 

  46. Huanga C, Tu Z, Shen X (2013) Molecularly imprinted photocatalyst with a structural analogue of template and its application. J Hazard Mater 248–249:379–386. doi:10.1016/j.jhazmat.2013.01.037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Resmini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mirata, F., Resmini, M. (2017). Metal Complexes and Imprinted Polymers for Shape-Selective Catalysis. In: Poli, R. (eds) Effects of Nanoconfinement on Catalysis. Fundamental and Applied Catalysis. Springer, Cham. https://doi.org/10.1007/978-3-319-50207-6_4

Download citation

Publish with us

Policies and ethics