Skip to main content

Algorithm Selection for Combinatorial Search Problems: A Survey

  • Chapter
  • First Online:
Data Mining and Constraint Programming

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10101))

Abstract

The Algorithm Selection Problem is concerned with selecting the best algorithm to solve a given problem on a case-by-case basis. It has become especially relevant in the last decade, as researchers are increasingly investigating how to identify the most suitable existing algorithm for solving a problem instead of developing new algorithms. This survey presents an overview of this work focusing on the contributions made in the area of combinatorial search problems, where Algorithm Selection techniques have achieved significant performance improvements. We unify and organise the vast literature according to criteria that determine Algorithm Selection systems in practice. The comprehensive classification of approaches identifies and analyses the different directions from which Algorithm Selection has been approached. This chapter contrasts and compares different methods for solving the problem as well as ways of using these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aha, D.W.: Generalizing from case studies: a case study. In: Proceedings of the 9th International Workshop on Machine Learning, pp. 1–10. Morgan Kaufmann Publishers Inc, San Francisco (1992)

    Google Scholar 

  2. Allen, J.A., Minton, S.: Selecting the right heuristic algorithm: runtime performance predictors. In: McCalla, G. (ed.) AI 1996. LNCS, vol. 1081, pp. 41–53. Springer, Heidelberg (1996). doi:10.1007/3-540-61291-2_40

    Chapter  Google Scholar 

  3. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a lazy portfolio approach for constraint solving. TPLP 14(4–5), 509–524 (2014)

    MATH  Google Scholar 

  4. Ansel, J., Chan, C., Wong, Y.L., Olszewski, M., Zhao, Q., Edelman, A., Amarasinghe, S.: PetaBricks: a language and compiler for algorithmic choice. SIGPLAN Not. 44(6), 38–49 (2009)

    Article  Google Scholar 

  5. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 142–157. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04244-7_14

    Chapter  Google Scholar 

  6. Arbelaez, A., Hamadi, Y., Sebag, M.: Online heuristic selection in constraint programming. In: Symposium on Combinatorial Search (2009)

    Google Scholar 

  7. Armstrong, W., Christen, P., McCreath, E., Rendell, A.P.: Dynamic algorithm selection using reinforcement learning. In: International Workshop on Integrating AI and Data Mining, pp. 18–25, December 2006

    Google Scholar 

  8. Balasubramaniam, D., Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale, P.: An automated approach to generating efficient constraint solvers. In: 34th International Conference on Software Engineering, pp. 661–671, June 2012

    Google Scholar 

  9. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 36(1–2), 105–139 (1999)

    Article  Google Scholar 

  10. Beck, J.C., Fox, M.S.: Dynamic problem structure analysis as a basis for constraint-directed scheduling heuristics. Artif. Intell. 117(1), 31–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beck, J.C., Freuder, E.C.: Simple rules for low-knowledge algorithm selection. In: Régin, J.-C., Rueher, M. (eds.) CPAIOR 2004. LNCS, vol. 3011, pp. 50–64. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24664-0_4

    Chapter  Google Scholar 

  12. Bhowmick, S., Eijkhout, V., Freund, Y., Fuentes, E., Keyes, D.: Application of machine learning in selecting sparse linear solvers. Technical report, Columbia University (2006)

    Google Scholar 

  13. Bhowmick, S., Toth, B., Raghavan, P.: Towards low-cost, high-accuracy classifiers for linear solver selection. In: Allen, G., Nabrzyski, J., Seidel, E., Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 463–472. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01970-8_45

    Chapter  Google Scholar 

  14. Borrett, J.E., Tsang, E.P.K.: A context for constraint satisfaction problem formulation selection. Constraints 6(4), 299–327 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Borrett, J.E., Tsang, E.P.K., Walsh, N.R.: Adaptive constraint satisfaction: The quickest first principle. In: ECAI, pp. 160–164 (1996)

    Google Scholar 

  16. Bougeret, M., Dutot, P., Goldman, A., Ngoko, Y., Trystram, D.: Combining multiple heuristics on discrete resources. In: IEEE International Symposium on Parallel and Distributed Processing, pp. 1–8. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  17. Brazdil, P.B., Soares, C.: A comparison of ranking methods for classification algorithm selection. In: López de Mántaras, R., Plaza, E. (eds.) ECML 2000. LNCS (LNAI), vol. 1810, pp. 63–75. Springer, Heidelberg (2000). doi:10.1007/3-540-45164-1_8

    Chapter  Google Scholar 

  18. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Brewer, E.A.: High-level optimization via automated statistical modeling. In: Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPOPP 1995, pp. 80–91. ACM, New York (1995)

    Google Scholar 

  20. Brodley, C.E.: Addressing the selective superiority problem: automatic algorithm/model class selection. In: ICML, pp. 17–24 (1993)

    Google Scholar 

  21. Cahill, E.: Knowledge-based algorithm construction for real-world engineering PDEs. Math. Comput. Simul. 36(4–6), 389–400 (1994)

    Article  MathSciNet  Google Scholar 

  22. Carbonell, J., Etzioni, O., Gil, Y., Joseph, R., Knoblock, C., Minton, S., Veloso, M.: PRODIGY: an integrated architecture for planning and learning. SIGART Bull. 2, 51–55 (1991)

    Article  Google Scholar 

  23. Carchrae, T., Beck, J.C.: Low-knowledge algorithm control. In: AAAI, pp. 49–54 (2004)

    Google Scholar 

  24. Carchrae, T., Beck, J.C.: Applying machine learning to Low-knowledge control of optimization algorithms. Comput. Intell. 21(4), 372–387 (2005)

    Article  MathSciNet  Google Scholar 

  25. Caseau, Y., Laburthe, F., Silverstein, G.: A meta-heuristic factory for vehicle routing problems. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 144–158. Springer, Heidelberg (1999). doi:10.1007/978-3-540-48085-3_11

    Google Scholar 

  26. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: 12th International Joint Conference on Artificial Intelligence, pp. 331–337. Morgan Kaufmann Publishers Inc, San Francisco, CA, USA (1991)

    Google Scholar 

  27. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of exploration applied to search heuristic selection. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 1355–1361. AAAI Press (2005)

    Google Scholar 

  28. Cook, D.J., Varnell, R.C.: Maximizing the benefits of parallel search using machine learning. In: Proceedings of the 14th National Conference on Artificial Intelligence, pp. 559–564. AAAI Press (1997)

    Google Scholar 

  29. Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E., Petitet, A., Vuduc, R., Whaley, R.C., Yelick, K.: Self-adapting linear algebra algorithms and software. Proc. IEEE 93(2), 293–312 (2005)

    Article  Google Scholar 

  30. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). doi:10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  31. Domingos, P.: How to get a free lunch: a simple cost model for machine learning applications. In: AAAI98/ICML98 Workshop on the Methodology of Applying Machine Learning, pp. 1–7. AAAI Press (1998)

    Google Scholar 

  32. Domshlak, C., Karpas, E., Markovitch, S.: To max or not to max: online learning for speeding up optimal planning. In: AAAI (2010)

    Google Scholar 

  33. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP models. In: Proceedings of the 9th International Workshop on Constraint Modelling and Reformulation, September 2010

    Google Scholar 

  34. Elsayed, S.A.M., Michel, L.: Synthesis of search algorithms from high-level CP models. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 256–270. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_21

    Chapter  Google Scholar 

  35. Epstein, S.L., Freuder, E.C.: Collaborative learning for constraint solving. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 46–60. Springer, Heidelberg (2001). doi:10.1007/3-540-45578-7_4

    Chapter  Google Scholar 

  36. Epstein, S.L., Freuder, E.C., Wallace, R., Morozov, A., Samuels, B.: The adaptive constraint engine. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 525–540. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_35

    Chapter  Google Scholar 

  37. Ewald, R., Schulz, R., Uhrmacher, A.M.: Selecting simulation algorithm portfolios by genetic algorithms. In: IEEE Workshop on Principles of Advanced and Distributed Simulation PADS 2010, IEEE Computer Society, Washington, DC (2010)

    Google Scholar 

  38. Fawcett, C., Vallati, M., Hutter, F., Hoffmann, J., Hoos, H., Leyton-Brown, K.: Improved features for runtime prediction of domain-independent planners. In: ICAPS (2014)

    Google Scholar 

  39. Fink, E.: Statistical selection among problem-solving methods. Technical report CMU-CS-97-101. Carnegie Mellon University (1997)

    Google Scholar 

  40. Fink, E.: How to solve it automatically: selection among problem-solving methods. In: Proceedings of the 4th International Conference on Artificial Intelligence Planning Systems, pp. 128–136. AAAI Press (1998)

    Google Scholar 

  41. Fukunaga, A.S.: Genetic algorithm portfolios. IEEE Congr. Evol. Comput. 2, 1304–1311 (2000)

    Google Scholar 

  42. Fukunaga, A.S.: Automated discovery of composite SAT variable-selection heuristics. In: 18th National Conference on Artificial Intelligence, pp. 641–648. American Association for Artificial Intelligence, Menlo Park (2002)

    Google Scholar 

  43. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability testing. Evol. Comput. 16, 31–61 (2008)

    Article  Google Scholar 

  44. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive online time allocation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 7–12. Springer, Heidelberg (2005). doi:10.1007/11550907_2

    Google Scholar 

  45. Gagliolo, M., Schmidhuber, J.: Impact of censored sampling on the performance of restart strategies. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 167–181. Springer, Heidelberg (2006). doi:10.1007/11889205_14

    Chapter  Google Scholar 

  46. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math. Artif. Intell. 47(3–4), 295–328 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Gagliolo, M., Schmidhuber, J.: Towards distributed algorithm portfolios. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds.) Advances in Soft Computing. AINSC, vol. 50, pp. 634–643. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85863-8_75

    Google Scholar 

  48. Gagliolo, M., Schmidhuber, J.: Algorithm portfolio selection as a bandit problem with unbounded losses. Ann. Math. Artif. Intell. 61(2), 49–86 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gagliolo, M., Zhumatiy, V., Schmidhuber, J.: Adaptive online time allocation to search algorithms. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 134–143. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30115-8_15

    Chapter  Google Scholar 

  50. Garrido, P., Riff, M.: DVRP: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. J. Heuristics 16, 795–834 (2010)

    Article  MATH  Google Scholar 

  51. Gebruers, C., Guerri, A., Hnich, B., Milano, M.: Making choices using structure at the instance level within a case based reasoning framework. In: CPAIOR, pp. 380–386 (2004)

    Google Scholar 

  52. Gebruers, C., Hnich, B., Bridge, D., Freuder, E.: Using CBR to select solution strategies in constraint programming. In: Proceedings of ICCBR 2005, pp. 222–236 (2005)

    Google Scholar 

  53. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M.T., Ziller, S.: A portfolio solver for answer set programming: preliminary report. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 352–357. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20895-9_40

    Chapter  Google Scholar 

  54. Gent, I., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie, K.: Learning when to use lazy learning in constraint solving. In: 19th European Conference on Artificial Intelligence, pp. 873–878, August 2010

    Google Scholar 

  55. Gent, I., Kotthoff, L., Miguel, I., Nightingale, P.: Machine learning for constraint solver design - a case study for the alldifferent constraint. In: 3rd Workshop on Techniques for implementing Constraint Programming Systems (TRICS), pp. 13–25 (2010)

    Google Scholar 

  56. Gerevini, A.E., Saetti, A., Vallati, M.: An automatically configurable portfolio-based planner with macro-actions: PbP. In: Proceedings of the 19th International Conference on Automated Planning and Scheduling, pp. 350–353 (2009)

    Google Scholar 

  57. Gomes, C.P., Selman, B.: Algorithm portfolio design: theory vs. practice. In: UAI, pp. 190–197 (1997)

    Google Scholar 

  58. Gomes, C.P., Selman, B.: Practical aspects of algorithm portfolio design. In: Proceedings of 3rd ILOG International Users Meeting (1997)

    Google Scholar 

  59. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gratch, J., DeJong, G.: COMPOSER: a probabilistic solution to the utility problem in speed-up learning. In: AAAI, pp. 235–240 (1992)

    Google Scholar 

  61. Guerri, A., Milano, M.: Learning techniques for automatic algorithm portfolio selection. In: ECAI, pp. 475–479 (2004)

    Google Scholar 

  62. Guo, H.: Algorithm selection for sorting and probabilistic inference: a machine learning-based approach. Ph.D. thesis, Kansas State University (2003)

    Google Scholar 

  63. Guo, H., Hsu, W.H.: A learning-based algorithm selection meta-reasoner for the real-time MPE problem. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 307–318. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30549-1_28

    Chapter  Google Scholar 

  64. Haim, S., Walsh, T.: Restart strategy selection using machine learning techniques. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 312–325. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_30

    Chapter  Google Scholar 

  65. Hogg, T., Huberman, B.A., Williams, C.P.: Phase transitions and the search problem. Artif. Intell. 81(1–2), 1–15 (1996)

    Article  MathSciNet  Google Scholar 

  66. Hong, L., Page, S.E.: Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl. Acad. Sci. U.S.A. 101(46), 16385–16389 (2004)

    Article  Google Scholar 

  67. Hoos, H., Lindauer, M., Schaub, T.: claspfolio 2: Advances in algorithm selection for answer set programming. TPLP 14(4–5), 569–585 (2014)

    MATH  Google Scholar 

  68. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)

    Article  Google Scholar 

  69. Hoos, H.H., Kaminski, R., Lindauer, M., Schaub, T.: aspeed: Solver scheduling via answer set programming. Theory Pract. Logic Program. FirstView 15, 1–26 (2014)

    Google Scholar 

  70. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.: A Bayesian approach to tackling hard computational problems. In: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  71. Hough, P.D., Williams, P.J.: Modern machine learning for automatic optimization algorithm selection. In: Proceedings of the INFORMS Artificial Intelligence and Data Mining Workshop, November 2006

    Google Scholar 

  72. Howe, A.E., Dahlman, E., Hansen, C., Scheetz, M., Mayrhauser, A.: Exploiting competitive planner performance. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 62–72. Springer, Heidelberg (2000). doi:10.1007/10720246_5

    Chapter  Google Scholar 

  73. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational problems. Science 275(5296), 51–54 (1997)

    Article  Google Scholar 

  74. Hurley, B., Kotthoff, L., Malitsky, Y., O’Sullivan, B.: Proteus: a hierarchical portfolio of solvers and transformations. In: CPAIOR, May 2014

    Google Scholar 

  75. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction and automated tuning of randomized and parametric algorithms. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006). doi:10.1007/11889205_17

    Chapter  Google Scholar 

  76. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  77. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION. LNCS, vol. 7219, pp. 55–70. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_5

    Chapter  Google Scholar 

  78. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

    MATH  Google Scholar 

  79. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on local search. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1152–1157. AAAI Press (2007)

    Google Scholar 

  80. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm selection and scheduling. In: 17th International Conference on Principles and Practice of Constraint Programming, pp. 454–469 (2011)

    Google Scholar 

  81. Kadioglu, S., Malitsky, Y., Sellmann, M., Tierney, K.: ISAC instance-specific algorithm configuration. In: 19th European Conference on Artificial Intelligence, pp. 751–756. IOS Press (2010)

    Google Scholar 

  82. Kamel, M.S., Enright, W.H., Ma, K.S.: ODEXPERT: an expert system to select numerical solvers for initial value ODE systems. ACM Trans. Math. Softw. 19(1), 44–62 (1993)

    Article  MATH  Google Scholar 

  83. Kotthoff, L.: Hybrid regression-classification models for algorithm selection. In: 20th European Conference on Artificial Intelligence, pp. 480–485, August 2012

    Google Scholar 

  84. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014)

    Google Scholar 

  85. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm selection for search problems. AI Commun. 25(3), 257–270 (2012)

    MathSciNet  Google Scholar 

  86. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19084-6_18

    Chapter  Google Scholar 

  87. Kotthoff, L., Miguel, I., Nightingale, P.: Ensemble classification for constraint solver configuration. In: 16th International Conference on Principles and Practices of Constraint Programming, pp. 321–329, September 2010

    Google Scholar 

  88. Kroer, C., Malitsky, Y.: Feature filtering for Instance-Specific algorithm configuration. In: Proceedings of the 23rd International Conference on Tools with Artificial Intelligence (2011)

    Google Scholar 

  89. Kuefler, E., Chen, T.-Y.: On using reinforcement learning to solve sparse linear systems. In: Bubak, M., Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008. LNCS, vol. 5101, pp. 955–964. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69384-0_100

    Chapter  Google Scholar 

  90. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Proceedings of the 17th International Conference on Machine Learning, pp. 511–518. Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  91. Lagoudakis, M.G., Littman, M.L.: Learning to select branching rules in the DPLL procedure for satisfiability. In: LICS/SAT, pp. 344–359 (2001)

    Google Scholar 

  92. Langley, P.: Learning effective search heuristics. In: IJCAI, pp. 419–421 (1983)

    Google Scholar 

  93. Langley, P.: Learning search strategies through discrimination. Int. J. Man-Mach. Stud. 18, 513–541 (1983)

    Article  Google Scholar 

  94. Leite, R., Brazdil, P., Vanschoren, J., Queiros, F.: Using active testing and meta-level information for selection of classification algorithms. In: 3rd PlanLearn Workshop, August 2010

    Google Scholar 

  95. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of optimization problems: the case of combinatorial auctions. In: Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3_37

    Chapter  Google Scholar 

  96. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Empirical hardness models: methodology and a case study on combinatorial auctions. J. ACM 56, 1–52 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  97. Lindauer, M., Hoos, H., Hutter, F.: From sequential algorithm selection to parallel portfolio selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 1–16. Springer, Heidelberg (2015). doi:10.1007/978-3-319-19084-6_1

    Chapter  Google Scholar 

  98. Lindauer, M., Hoos, H.H., Hutter, F., Schaub, T.: AutoFolio: algorithm configuration for algorithm selection. In: Twenty-Ninth AAAI Workshops on Artificial Intelligence, January 2015

    Google Scholar 

  99. Little, J., Gebruers, C., Bridge, D., Freuder, E.: Capturing constraint programming experience: a case-based approach. In: Modref (2002)

    Google Scholar 

  100. Lobjois, L., Lemaître, M.: Branch and bound algorithm selection by performance prediction. In: Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence, pp. 353–358. American Association for Artificial Intelligence, Menlo Park (1998)

    Google Scholar 

  101. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Non-model-based algorithm portfolios for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 369–370. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21581-0_33

    Chapter  Google Scholar 

  102. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios based on cost-sensitive hierarchical clustering. In: IJCAI, August 2013

    Google Scholar 

  103. Minton, S.: An analytic learning system for specializing heuristics. In: Proceedings of the 13th International Joint Conference on Artifical Intelligence IJCAI 1993, pp. 922–928. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  104. Minton, S.: Integrating heuristics for constraint satisfaction problems: a case study. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 120–126. AAAI (1993)

    Google Scholar 

  105. Minton, S.: Automatically configuring constraint satisfaction programs: a case study. Constraints 1, 7–43 (1996)

    Article  MathSciNet  Google Scholar 

  106. Musliu, N., Schwengerer, M.: Algorithm selection for the graph coloring problem. In: Nicosia, G., Pardalos, P. (eds.) LION 2013. LNCS, vol. 7997, pp. 389–403. Springer, Heidelberg (2013). doi:10.1007/978-3-642-44973-4_42

    Chapter  Google Scholar 

  107. Nareyek, A.: Choosing search heuristics by non-stationary reinforcement learning. In: Nareyek, A. (ed.) Metaheuristics: Computer Decision-Making. Applied Optimization, vol. 86, pp. 523–544. Kluwer Academic Publishers, New York (2001)

    Chapter  Google Scholar 

  108. Nikolić, M., Marić, F., Janičić, P.: Instance-based selection of policies for SAT solvers. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 326–340. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2_31

    Chapter  Google Scholar 

  109. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Understanding random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_33

    Chapter  Google Scholar 

  110. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  111. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    MATH  Google Scholar 

  112. Paparrizou, A., Stergiou, K.: Evaluating simple fully automated heuristics for adaptive constraint propagation. In: ICTAI (2012)

    Google Scholar 

  113. Petrik, M.: Statistically optimal combination of algorithms. In: Local Proceedings of SOFSEM 2005 (2005)

    Google Scholar 

  114. Petrik, M., Zilberstein, S.: Learning parallel portfolios of algorithms. Ann. Math. Artif. Intell. 48(1–2), 85–106 (2006)

    MathSciNet  MATH  Google Scholar 

  115. Petrovic, S., Qu, R.: Case-based reasoning as a heuristic selector in hyper-heuristic for course timetabling problems. In: KES, pp. 336–340 (2002)

    Google Scholar 

  116. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.G.: Meta-Learning by landmarking various learning algorithms. In: 17th International Conference on Machine Learning ICML 2000, pp. 743–750, Morgan Kaufmann Publishers Inc., San Francisco (2000)

    Google Scholar 

  117. Pulina, L., Tacchella, A.: A multi-engine solver for quantified Boolean formulas. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 574–589. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_41

    Chapter  Google Scholar 

  118. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean formulas. Constraints 14(1), 80–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  119. Rao, R.B., Gordon, D., Spears, W.: For every generalization action, is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. In: Proceedings of the 12th International Conference on Machine Learning, pp. 471–479. Morgan Kaufmann (1995)

    Google Scholar 

  120. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)

    Article  Google Scholar 

  121. Rice, J.R., Ramakrishnan, N.: How to get a free lunch (at no cost). Techical report 99–014, Purdue University, April 1999

    Google Scholar 

  122. Roberts, M., Howe, A.E.: Directing a portfolio with learning. In: AAAI 2006 Workshop on Learning for Search (2006)

    Google Scholar 

  123. Roberts, M., Howe, A.E.: Learned models of performance for many planners. In: ICAPS 2007 Workshop AI Planning and Learning (2007)

    Google Scholar 

  124. Roberts, M., Howe, A.E., Wilson, B., des Jardins, M.: What makes planners predictable? In: ICAPS, pp. 288–295 (2008)

    Google Scholar 

  125. Sakkout, H., Wallace, M.G., Richards, E.B.: An instance of adaptive constraint propagation. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 164–178. Springer, Heidelberg (1996). doi:10.1007/3-540-61551-2_73

    Google Scholar 

  126. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 255–260. AAAI Press (2007)

    Google Scholar 

  127. Sayag, T., Fine, S., Mansour, Y.: Combining multiple heuristics. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 242–253. Springer, Heidelberg (2006). doi:10.1007/11672142_19

    Chapter  Google Scholar 

  128. Schapire, R.E.: The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)

    Google Scholar 

  129. Sillito, J.: Improvements to and estimating the cost of solving constraint satisfaction problems. Master’s thesis, University of Alberta (2000)

    Google Scholar 

  130. Silverthorn, B., Miikkulainen, R.: Latent class models for algorithm portfolio methods. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (2010)

    Google Scholar 

  131. Smith, T.E., Setliff, D.E.: Knowledge-based constraint-driven software synthesis. In: Knowledge-Based Software Engineering Conference, pp. 18–27, September 1992

    Google Scholar 

  132. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial optimization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  133. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41, 6: 1–6: 25 (2008)

    Article  Google Scholar 

  134. Smith-Miles, K.A.: Towards insightful algorithm selection for optimisation using meta-learning concepts. In: IEEE International Joint Conference on Neural Networks, pp. 4118–4124, June 2008

    Google Scholar 

  135. Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)

    Article  MATH  Google Scholar 

  136. Stergiou, K.: Heuristics for dynamically adapting propagation in constraint satisfaction problems. AI Commun. 22(3), 125–141 (2009)

    MathSciNet  MATH  Google Scholar 

  137. Stern, D.H., Samulowitz, H., Herbrich, R., Graepel, T., Pulina, L., Tacchella, A.: Collaborative expert portfolio management. In: AAAI, pp. 179–184 (2010)

    Google Scholar 

  138. Streeter, M.J., Golovin, D., Smith, S.F.: Combining multiple heuristics online. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1197–1203. AAAI Press (2007)

    Google Scholar 

  139. Streeter, M.J., Golovin, D., Smith, S.F.: Restart schedules for ensembles of problem instances. In: Proceedings of the 22nd National Conference on Artificial Intelligence, pp. 1204–1210. AAAI Press (2007)

    Google Scholar 

  140. Streeter, M.J., Smith, S.F.: New techniques for algorithm portfolio design. In: UAI, pp. 519–527 (2008)

    Google Scholar 

  141. Terashima-Marín, H., Ross, P., Valenzuela-Rendón, M.: Evolution of constraint satisfaction strategies in examination timetabling. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 635–642. Morgan Kaufmann (1999)

    Google Scholar 

  142. Tolpin, D., Shimony, S.E.: Rational deployment of CSP heuristics. In: IJCAI, pp. 680–686 (2011)

    Google Scholar 

  143. Tsang, E.P.K., Borrett, J.E., Kwan, A.C.M.: An attempt to map the performance of a range of algorithm and heuristic combinations. In: Proceedings of AISB 1995, pp. 203–216. IOS Press (1995)

    Google Scholar 

  144. Utgoff, P.E.: Perceptron trees: a case study in hybrid concept representations. In: National Conference on Artificial Intelligence, pp. 601–606 (1988)

    Google Scholar 

  145. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid approach. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms SODA 2006, pp. 1–10. ACM, New York (2006)

    Google Scholar 

  146. Vrakas, D., Tsoumakas, G., Bassiliades, N., Vlahavas, I.: Learning rules for adaptive planning. In: Proceedings of the 13th International Conference on Automated Planning and Scheduling, pp. 82–91 (2003)

    Google Scholar 

  147. Wang, J., Tropper, C.: Optimizing time warp simulation with reinforcement learning techniques. In: Proceedings of the 39th Conference on Winter simulation WSC 2007, pp. 577–584. IEEE Press, Piscataway (2007)

    Google Scholar 

  148. Watson, J.: Empirical modeling and analysis of local search algorithms for the job-shop scheduling problem. Ph.D. thesis, Colorado State University, Fort Collins, CO, USA (2003)

    Google Scholar 

  149. Weerawarana, S., Houstis, E.N., Rice, J.R., Joshi, A., Houstis, C.E.: PYTHIA: a knowledge-based system to select scientific algorithms. ACM Trans. Math. Softw. 22(4), 447–468 (1996)

    Article  MATH  Google Scholar 

  150. Wei, W., Li, C.M., Zhang, H.: Switching among non-weighting, clause weighting, and variable weighting in local search for SAT. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 313–326. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85958-1_21

    Chapter  Google Scholar 

  151. Wilson, D., Leake, D., Bramley, R.: Case-based recommender components for scientific problem-solving environments. In: Proceedings of the 16th International Association for Mathematics and Computers in Simulation World Congress (2000)

    Google Scholar 

  152. Wolpert, D.H.: Stacked generalization. Neural Netw. 5, 241–259 (1992)

    Article  Google Scholar 

  153. Wolpert, D.H.: The supervised learning no-free-lunch theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications, pp. 25–42 (2001)

    Google Scholar 

  154. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  155. Wu, H., van Beek, P.: On portfolios for backtracking search in the presence of deadlines. In: Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence, pp. 231–238. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  156. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hierarchical hardness models for SAT. In: CP, pp. 696–711 (2007)

    Google Scholar 

  157. Xu, L., Hoos, H.H., Leyton-Brown, K.: Hydra: automatically configuring algorithms for portfolio-based selection. In: 24th Conference of the Association for the Advancement of Artificial Intelligence (AAAI 2010), pp. 210–216 (2010)

    Google Scholar 

  158. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: the design and analysis of an algorithm portfolio for SAT. In: CP, pp. 712–727 (2007)

    Google Scholar 

  159. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

    MATH  Google Scholar 

  160. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla2009: an automatic algorithm portfolio for SAT. In: 2009 SAT Competition (2009)

    Google Scholar 

  161. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: automated algorithm configuration and selection for mixed integer programming. In: RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI) (2011)

    Google Scholar 

  162. Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: Evaluating component solver contributions to portfolio-based algorithm selectors. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 228–241. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8_18

    Chapter  Google Scholar 

  163. Yu, H., Rauchwerger, L.: An adaptive algorithm selection framework for reduction parallelization. IEEE Trans. Parallel Distrib. Syst. 17(10), 1084–1096 (2006)

    Article  Google Scholar 

  164. Yu, H., Zhang, D., Rauchwerger, L.: An adaptive algorithm selection framework. In: Proceedings of the 13th International Conference on Parallel Architectures and Compilation Techniques, pp. 278–289. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  165. Yun, X., Epstein, S.L.: Learning algorithm portfolios for parallel execution. In: Hamadi, Y., Schoenauer, M. (eds.) Proceedings of the 6th International Conference Learning and Intelligent Optimisation LION. LNCS, vol. 7219, pp. 323–338. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgements

Ian Miguel and Ian Gent provided valuable feedback that helped shape this chapter. We also thank the anonymous reviewers of a previous version of this chapter whose detailed comments helped to greatly improve it. This work was supported by an EPSRC doctoral prize and EU FP7 FET project ICON. A shorter version of this chapter has appeared in AI Magazine [84].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kotthoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Kotthoff, L. (2016). Algorithm Selection for Combinatorial Search Problems: A Survey. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., Pedreschi, D. (eds) Data Mining and Constraint Programming. Lecture Notes in Computer Science(), vol 10101. Springer, Cham. https://doi.org/10.1007/978-3-319-50137-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50137-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50136-9

  • Online ISBN: 978-3-319-50137-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics