Skip to main content

Learning Constraint Satisfaction Problems: An ILP Perspective

  • Chapter
  • First Online:
Data Mining and Constraint Programming

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10101))

Abstract

We investigate the problem of learning constraint satisfaction problems from an inductive logic programming perspective. Constraint satisfaction problems are the underlying basis for constraint programming and there is a long standing interest in techniques for learning these. Constraint satisfaction problems are often described using a relational logic, so inductive logic programming is a natural candidate for learning such problems. So far, there is however only little work on the intersection between learning constraint satisfaction problems and inductive logic programming. In this article, we point out several similarities and differences between the two classes of techniques that may inspire further cross-fertilization between these two fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Observe that we choose here to represent global constraints as unary predicates, taking a list of variables as its arguments. An alternative would be to introduce one version of the global predicate for any possible arity, e.g. alldifferent(X, Y), alldifferent(X, Y, Z), ....

  2. 2.

    It is well-known in ILP [12] that when learning from interpretations, a hypothesis G is more general than S if and only if \(S\, \models \, G\), while when learning from entailment if and only if \(G\, \models \, S\).

References

  1. Abdennadher, S., Rigotti, C.: Automatic generation of rule-based solvers for intensionally defined constraints. IJAIT 11(2), 283–302 (2002)

    Google Scholar 

  2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    MathSciNet  Google Scholar 

  3. Beldiceanu, N., Carlsson, M., Rampon, J.-X.: Global constraint catalog. http://www.emn.fr/z-info/sdemasse/gccat/

  4. Beldiceanu, N., Simonis, H.: A constraint seeker: finding and ranking global constraints from examples. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 12–26. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23786-7_4

    Chapter  Google Scholar 

  5. Beldiceanu, N., Simonis, H.: A model seeker: extracting global constraint models from positive examples. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 141–157. Springer, Heidelberg (2012)

    Google Scholar 

  6. Bessiere, C., Coletta, R., Freuder, E.C., O’Sullivan, B.: Leveraging the learning power of examples in automated constraint acquisition. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 123–137. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30201-8_12

    Chapter  Google Scholar 

  7. Bessiere, C., Coletta, R., Hebrard, E., Katsirelos, G., Lazaar, N., Narodytska, N., Quimper, C.-G., Walsh, T.: Constraint acquisition via partial queries. In IJCAI, pp. 475–481. AAAI Press (2013)

    Google Scholar 

  8. Bessiere, C., Coletta, R., O’Sullivan, B., Paulin, M.: Query-driven constraint acquisition. In: IJCAI, pp. 50–55 (2007)

    Google Scholar 

  9. Buntine, W.: Generalized subsumption and its applications to induction and redundancy. Artif. Intell. 36(2), 149–176 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coletta, R., Bessiére, C., O’Sullivan, B., Freuder, E.C., O’Connell, S., Quinqueton, J.: Semi-automatic modeling by constraint acquisition. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 812–816. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45193-8_58

    Chapter  Google Scholar 

  11. De Raedt, L.: Induction in logic. In: Proceedings of the 3rd International Workshop on Multistrategy Learning, pp. 29–38 (1996)

    Google Scholar 

  12. De Raedt, L.: Logical and Relational Learning. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  13. De Raedt, L.: Inductive logic programming. In: Sammut, C., Webb, G.I. (eds.) Encyclopidea of Machine Learning. Springer, New York (2010)

    Google Scholar 

  14. De Raedt, L., Dehaspe, L.: Clausal discovery. ML 26(2–3), 99–146 (1997)

    MATH  Google Scholar 

  15. De Raedt, L., Džeroski, S.: First-order jk-clausal theories are PAC-learnable. Artif. Intell. 70(1–2), 375–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Raedt, L., Ramon, J.: Condensed representations for inductive logic programming. KR 4, 438–446 (2004)

    Google Scholar 

  17. Haussler, D.: Learning conjunctive concepts in structural domains. Machine Learning 4(1), 7–40 (1989)

    MathSciNet  Google Scholar 

  18. Kietz, J.-U.: Some lower bounds for the computational complexity of inductive logic programming. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 115–123. Springer, Heidelberg (1993). doi:10.1007/3-540-56602-3_131

    Chapter  Google Scholar 

  19. Lallouet, A., Lopez, M., Martin, L., Vrain, C.: On learning constraint problems. In: ICTAI, pp. 45–52 (2010)

    Google Scholar 

  20. Leo, K., Mears, C., Tack, G., Garcia de la Banda, M.: Globalizing constraint models. In: Schulte, C. (ed.) Principles and Practice of Constraint Programming. LNCS, vol. 8124, pp. 432–447. Springer, Berlin Heidelberg (2013)

    Chapter  Google Scholar 

  21. Mitchell, T.M.: Version spaces: a candidate elimination approach to rule learning. In: IJCAI, pp. 305–310. Morgan Kaufmann Publishers Inc (1977)

    Google Scholar 

  22. Mitchell, T.M.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  23. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74970-7_38

    Chapter  Google Scholar 

  24. Razakarison, N., Carlsson, M., Beldiceanu, N., Simonis, H.: GAC for a linear inequality and an atleast constraint with an application to learning simple polynomials. In: SOCS. AAAI Press (2013)

    Google Scholar 

  25. Smith, B.D., Rosenbloom, P.S.: Incremental non-backtracking focusing: a polynomially bounded generalization algorithm for version spaces. In: AAAI, pp. 848–853. Citeseer (1990)

    Google Scholar 

  26. Srinivasan, A.: The aleph manual (2001).http://www.cs.ox.ac.uk/activities/machlearn/Aleph/aleph.html

  27. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)

    Article  MATH  Google Scholar 

  28. Zhou, N.-F.: The language features and architecture of B-Prolog. Theory Pract. Log. Program. 12(1–2), 189–218 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission under the project “Inductive Constraint Programming” (FP7- 284715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Dries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

De Raedt, L., Dries, A., Guns, T., Bessiere, C. (2016). Learning Constraint Satisfaction Problems: An ILP Perspective. In: Bessiere, C., De Raedt, L., Kotthoff, L., Nijssen, S., O'Sullivan, B., Pedreschi, D. (eds) Data Mining and Constraint Programming. Lecture Notes in Computer Science(), vol 10101. Springer, Cham. https://doi.org/10.1007/978-3-319-50137-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50137-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50136-9

  • Online ISBN: 978-3-319-50137-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics