Skip to main content

Response of Marginopora vertebralis (Foraminifera) from Laucala Bay, Fiji, to Changing Ocean pH

  • Chapter
  • First Online:
Climate Change Adaptation in Pacific Countries

Part of the book series: Climate Change Management ((CCM))

Abstract

Increased CO2 emissions into the atmosphere lead to increased concentrations of dissolved CO2 in the ocean. A chemical reaction between the dissolved CO2 and seawater produces HCO3 , CO3 2− and H+ ions. These H+ ions increase the acidity of seawater and decrease the pH. Increased acidity and decreased availability of CO3 2− ion affect calcite and aragonite production by marine calcifiers in the ocean. To assess potential responses of the larger benthic foraminifer Marginopora vertebralis to ocean acidification, we performed growth experiments at three pH levels [7.5, 7.8, 8.1 (ambient seawater)] for 11 weeks. Specimens were stained with the fluorescent compound Calcein ( ̴40 µmole/l) prior to treatment, allowing identification of calcite added during the treatment period. At pH 8.1, specimens increased their test weight by 8.4%, at pH 7.8 growth was 4.2%, and at pH 7.5, growth was only 3.2%. These differences represent a significant relationship between ocean pH and test growth (i.e., calcification). In addition, several specimens in the pH 8.1 treatment underwent asexual reproduction during the experiment, while no reproduction was observed in the pH 7.8 or 7.5 treatments. These results indicate that ocean acidification predicted to occur by the end of the 21st century will cause a decline in population densities of Marginopora vertebralis in their natural environment, as consequences of both reduced growth rates and rates of reproduction. And because the tests of these foraminifers are important components of carbonate sediments on coral cays and tropical beaches, a decline in their rates of sediment production will exacerbate the consequences of rising sea level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernhard, J. M., Blanks, J. K., Hintz, C. J., & Chandler, G. T. (2004). Use of the fluorescent calcite marker calcein to label foraminiferal tests. Journal of Foraminiferal Research, 34(2), 96–101.

    Article  Google Scholar 

  • Caldeira, K., & Wickett, M. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research, 110(9), Article Number: C09S04.

    Google Scholar 

  • Cao, L., & Caldeira, K. (2008). Atmospheric CO2 stabilization and ocean acidification. Geophysical Research Letters, 35(19), Article Number: L19609.

    Google Scholar 

  • Dias, B., Hart, M., Smart, C., & Hall-Spencer, J. (2010). Modern seawater acidification: The response of foraminifera to high-CO2 conditions in the Mediterranean Sea. Journal of the Geological Society, 167(5), 843–846.

    Article  CAS  Google Scholar 

  • Dissard, D., Nehrke, G., Reichart, G., Nouet, J., & Bijma, J. (2009). Effect of the fluorescent indicator calcein on Mg and Sr incorporation into foraminiferal calcite. Geochemistry, Geophysics, Geosystems, 10(11), Article Number: Q11001.

    Google Scholar 

  • Dissard, D., Nehrke, G., Reichart, G., & Bijma, J. (2010). Impact of seawater pCO2 on calcification and Mg/Ca and Sr/Ca ratios in benthic foraminifera calcite: Results from culturing experiments with Ammonia tepida. Biogeosciences, 7, 81–93.

    Article  CAS  Google Scholar 

  • Doo, S., Fujita, K., Byrne, M., & Uthicke, S. (2014). Fate of calcifying tropical symbiont-bearing large benthic foraminifera: Living sands in the changing ocean. Biological Bulletin, 226, 169–186.

    Article  CAS  Google Scholar 

  • Erez, J. (2003). The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in Mineralogy and Geochemistry, 54(1), 115–149.

    Article  CAS  Google Scholar 

  • Feely, R., & Doney, S. (2011). Ocean acidification: The other CO2 problem. Limnology and Oceanography e-Lectures.

    Google Scholar 

  • Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., et al. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305, 362–366.

    Article  CAS  Google Scholar 

  • Fujita, K., Hikami, M., Suzuki, A., Kuroyanagi, A., Sakai, K., Kawahata, H., et al. (2011). Effects of ocean acidification on calcification of symbiont-bearing reef foraminifera. Biogeosciences, 8(8), 2089–2098.

    Article  Google Scholar 

  • Fujita, K., Otomaru, M., Lopati, P., Hosono, T., & Kayanne, H. (2016). Shell productivity of the large benthic foraminifer Baculogypsina sphaerulata, based on the population dynamics in a tropical reef environment. Coral Reefs, 35(1), 317–326.

    Article  Google Scholar 

  • Gattuso, J., & Lavigne, H. (2009). Technical note: Approaches and software tools to investigate the impact of ocean acidification. Biogeosciences, 6(10), 2121–2133.

    Article  CAS  Google Scholar 

  • Gattuso, J.-P., & Hansson, L. (2011). Ocean acidification. Oxford: Oxford University Press.

    Google Scholar 

  • Hallock, P. (1981). Production of carbonate sediments by selected foraminifera on two Pacific coral reefs. Journal of Sedimentary Petrology, 51, 467–474.

    Google Scholar 

  • Haynert, K., Schӧnfeld, J., Riebesell, U., & Polovodova, I. (2011). Biometry and dissolution features of the benthic foraminifer Ammonia aomoriensis at high pCO2. Marine Ecology Progress Series, 432, 53–67.

    Article  CAS  Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W., & Gattuso, J. P. (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411), 118–120.

    Article  CAS  Google Scholar 

  • IPCC. (2013). Summary for policymakers. In T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Knorr, P., Robbins, L., Harries, P., Hallock, P., & Wynn, J. (2015). Response of the miliolid Archaiasangulatus to simulated ocean acidification. Journal of Foraminiferal Research, 45(2), 109–127.

    Article  Google Scholar 

  • Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K., & Irie, T. (2009). Impacts of ocean acidification on large benthic foraminifera: Results from laboratory experiments. Marine Micropaleontology, 73(3–4), 190–195.

    Article  Google Scholar 

  • Lea, D., Mashiotta, T., & Spero, H. (1999). Controls on magnesium and strontium uptake in planktonic foraminifera determined by live culturing. Geochimica et Cosmochimica Acta, 63(16), 2369–2379.

    Article  CAS  Google Scholar 

  • Lewis, E., Wallace, D., & Allison, L. (1998). Program developed for CO 2 ‚ system calculations. Oak Ridge, Tennessee: Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy.

    Google Scholar 

  • Lueker, T., Dickson, A., & Keeling, C. (2000). Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Marine Chemistry, 70(1–3), 105–119.

    Article  CAS  Google Scholar 

  • Manno, C., Morata, N., & Bellerby, R. (2012). Effect of ocean acidification and temperature increase on the planktonic foraminifer Neogloboquadrinapachyderma (sinistral). Polar Biology, 35(9), 1311–1319.

    Article  Google Scholar 

  • McIntyre-Wressnig, A., Bernhard, J., McCorkle, D., & Hallock, P. (2013). Non-lethal effects of ocean acidification on the symbiont-bearing benthic foraminifer Amphisteginagibbosa. Marine Ecology Progress Series, 472, 45–60.

    Article  CAS  Google Scholar 

  • Mehrbach, C., Culberson, C., Hawley, J., & Pytkowicz, R. (1973). Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18(6), 897–907.

    Article  CAS  Google Scholar 

  • Moy, A., Howard, W., Bray, S., & Trull, T. (2009). Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geoscience, 2(4), 276–280.

    Article  CAS  Google Scholar 

  • Neuer, S., Iversen, M., & Fischer, G. (2014). Ocean acidification: The other CO2 problem. Limnology and Oceanography e-Lectures.

    Google Scholar 

  • Orr, J., Fabry, V., Aumont, O., Bopp, L., Doney, S., Feely, R., et al. (2013). Benthic foraminifera show some resilience to ocean acidification in the Northern Gulf of California. Mexico. Marine Pollution Bulletin, 73(2), 452–462.

    Article  Google Scholar 

  • Papadopoulos, N., Dedoussis, G., Spanakos, G., Gritzapis, A., Baxevanis, C., & Papamichail, M. (1994). An improved fluorescence assay for thedetermination of lymphocyte-mediated cytotoxicity using flow cytometry. Journal of Immunological Methods, 177(1–2), 101–111.

    Google Scholar 

  • Pawlowski, L. (1994). Standard methods for the examination of water and wastewater, 18th ed. Science of the Total Environment, 142(3), 227–228.

    Google Scholar 

  • Pettit, L., Hart, M., Medina-Sánchez, A., Smart, C., Rodolfo-Metalpa, R., & Hall-Spencer, J. et al. (2013). Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico. Marine Pollution Bulletin, 73(2), 452–462.

    Google Scholar 

  • Prazeres, M., Uthicke, S., & Pandolfi J. M. (2015). Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proceedings of the royal society B: Biological sciences, 282(1803), Article Number: 20142782.

    Google Scholar 

  • Reymond, C., Lloyd, A., Kline, D., Dove, S., & Pandolfi, J. (2012). Decline in growth of foraminifer Marginoporarossi under eutrophication and ocean acidification scenarios. Global Change Biology, 19(1), 291–302.

    Article  Google Scholar 

  • Riebesell, U., Zondervan, I., Rost, B., Tortell, P., Zeebe, R., & Morel, F. (2000). Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407, 364–367.

    Article  CAS  Google Scholar 

  • Sabine, C. (2004). The oceanic sink for anthropogenic CO2. Science, 305(5682), 367–371.

    Article  CAS  Google Scholar 

  • Schmidt, C., Kucera, M., & Uthicke, S. (2014). Combined effects of warming and ocean acidification on coral reef foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs, 33(3), 805–818.

    Article  Google Scholar 

  • Sen Gupta, B. (2003). Modern foraminifera. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Sharma, A. (2007). A study of the benthic foraminifera of laucala bay, with special focus on Marginopora vertebralis. Degree of Master of Science, The University of South Pacific.

    Google Scholar 

  • Sinutok, S., Hill, R., Doblin, M., Wuhrer, R., & Ralph, P. (2011). Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnology and Oceanography, 56(4), 1200–1212.

    Article  CAS  Google Scholar 

  • Sinutok, S., Hill, R., Kühl, M., Doblin, M., & Ralph, P. (2014). Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Marine Biology, 161(9), 2143–2154.

    Article  CAS  Google Scholar 

  • Quoy, J. R., & Gaimard, P. (1830). Mollsques, vers et Zoophytes. In H. Blainville (Ed.), Dictionnaire des sciences naturelles. Paris: Levrault, F.

    Google Scholar 

  • Uthicke, S., & Fabricius, K. (2012). Productivity gains do not compensate for reduced calcification under near-future ocean acidification in thephotosynthetic benthic foraminifer species Marginopora vertebralis. Global Change Biology, 18(9), 2781–2791.

    Google Scholar 

  • Uthicke, S., Momigliano, P., & Fabricius, K. (2013). High risk of extinction of benthic foraminifera in this century due to ocean acidification. Scientific Reports, 3, Article Number: Q11P05.

    Google Scholar 

  • Vogel, N., & Uthicke, S. (2012). Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO environment. Journal of Experimental Marine Biology and Ecology, 424425, 15–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roselyn Naidu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Naidu, R., Hallock, P., Erez, J., Maata, M. (2017). Response of Marginopora vertebralis (Foraminifera) from Laucala Bay, Fiji, to Changing Ocean pH. In: Leal Filho, W. (eds) Climate Change Adaptation in Pacific Countries. Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-319-50094-2_8

Download citation

Publish with us

Policies and ethics