Skip to main content

Decreasing Greenhouse Gas Emissions of Meat Products Through Food Waste Reduction. A Framework for a Sustainability Assessment Approach

  • Chapter
  • First Online:
Food Waste Reduction and Valorisation

Abstract

The global food production industry is responsible for producing high levels of greenhouse gas (GHG) emissions. Along the entire food supply chain (FSC), potential for mitigation exists because approximately one-third of all food globally produced is wasted, equivalent to 1.3 billion tons per year. On a global scale, emissions from livestock production are about 4600–7100 Mt CO2-eq/year when considered over the whole life cycle. These numbers represent roughly 9.4–14.5% of the total global GHG emissions. In Austria, the livestock sector was responsible for producing about 11.6% of the total GHG emissions in 2012 as a result of the production of about 909,000 t of meat. A high potential for mitigation of GHG emissions from livestock production exists, especially during the farming and production phases. A reduction in meat waste would, in the long-term, directly reduce GHG emissions stemming from livestock production. Two scenarios were considered to assess the GHG mitigation potential of waste from meat production: a business-as-usual (BAU) scenario and a reduction (RED) scenario (assuming a one-third reduction in waste from meat production in Austria). Because food waste is influenced by several phenomena along the FSC, taking an approach such as the life cycle assessment (LCA) offers only a partial solution. By using a Sustainability Impact Assessment (SIA) approach, researchers can consider social, economic and ecological impacts. It is possible to analyze and compare food waste reduction potentials through the use of such a tool, which can support GHG mitigation efforts in terms of their social, environmental and economic contribution to the livestock and meat processing sector. This approach allowed the identification of indicators that contribute to all sustainability dimensions and support the conclusion that preventing waste from meat processing would save at least 4.8 Mt CO2-eq emissions per year in Austria, which represented 6% of Austria’s total CO2-eq emissions in 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Act will enter into force by July 2016 (Moveforhunger 2016).

  2. 2.

    Please see Fig. 2.1 for a graphical depiction.

  3. 3.

    It is believed that these levels are underestimated (European Union 2011).

  4. 4.

    Using the global warming (GWP) potential as calculated in the IPCC Second Assessment Report achieves consistency with the Austrian inventory report; however, using GWP values from AR5 increases national livestock emissions by approx. 2 Mt CO2-eq/year.

  5. 5.

    Subsectors defined as in UNFCCC (2006).

References

  • ARE (2004) Sustainability assessment: conceptual framework and basic methodology [cited 9 June 2015]. Available from: http://www.are.admin.ch/themen/nachhaltig/00270/index.html?lang=en

  • Bernhofer V (2009) Monetäre Bewertung von Lebensmittelabfällen im Restmüll aus Konsumentensicht im Untersuchungsgebiet Salzburg. Master’s thesis, Wien

    Google Scholar 

  • Castanheira EG, Freire F (2013) Greenhouse gas assessment of soybean production: implications of land use change and different cultivation systems. J Clean Prod 54:49–60

    Article  Google Scholar 

  • Chislock MF, Doster E, Zitomer RA, Wilson AE (2013) Eutrophication: causes, consequences, and controls in aquatic ecosystems. Nat Educ Knowl 4(4):10

    Google Scholar 

  • De Vries M, De Boer IJM (2010) Comparing environmental impacts for livestock products: a review of life cycle assessments. Liv Sci 128:1–11

    Article  Google Scholar 

  • European Commission (2005) Integrated pollution prevention and control—reference document on best available techniques in the slaughterhouses and animal by-products industries

    Google Scholar 

  • European Commission (2006) Environmental impact of products (EIPRO). Spain

    Google Scholar 

  • European Commission (2008) Green paper on the management of bio-waste in the European Union, Brussels

    Google Scholar 

  • European Environment Agency (2014) Approximated EU GHG inventory: proxy GHG estimates for 2013. EEA Technical report, No 16/2014, European Environment Agency, Copenhagen

    Google Scholar 

  • European Parliament (1999) Council directive 1999/31/EC of 26 April 1999 on the landfill of waste EU Parliament, Brussels

    Google Scholar 

  • European Parliament (2002) Regulation (EC) No 178/2002 of the parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European food safety authority and laying down procedures in matters of food safety. EU Parliament, Brussels

    Google Scholar 

  • European Parliament (2008) Directive 2008/98/EC of the European parliament and of the council of 19 November 2008 on waste and repealing certain directives. EU Parliament, Brussels

    Google Scholar 

  • European Union (2011) Food: from farm to fork. European Union, Luxembourg

    Google Scholar 

  • Eurostat (2015) Slaughtering in slaughterhouses—annual data [cited 31 May 2016]. Available from: http://ec.europa.eu/eurostat/web/products-datasets/product?code=apro_mt_pann

  • FAO (n.d.) Cattle body weights [cited 10 Jun 2015]. Available from: http://www.fao.org/wairdocs/ilri/x5522e/x5522e0b.htm

  • FAO (2011) Global food losses and food waste—extent, causes and prevention. FAO, Rome

    Google Scholar 

  • FAO (2013) Food wastage footprint—impact on natural resources. Technical report. FAO. Rome

    Google Scholar 

  • FAOSTAT (2015a) Emissions agriculture/enteric fermentation [cited 5 Jan 2015]. Available from: http://faostat3.fao.org/browse/G1/GE/E

  • FAOSTAT (2015b) Emissions agriculture/manure management [cited 5 Jan 2015]. Available from: http://faostat3.fao.org/browse/G1/GM/E

  • FAOSTAT (2015c) Emissions agriculture/manure applied to soils [cited 5 Jan 2015]. Available from: http://faostat3.fao.org/browse/G1/GU/E

  • FAOSTAT (2015d) Emissions agriculture/manure left on pasture [cited 5 Jan 2015]. Available from: http://faostat3.fao.org/browse/G1/GMP/E

  • Fusions (2014) FUSIONS definitional framework for food waste. Full report [cited 3 Sept 2015]. Available from: http://www.eu-fusions.org/index.php/publications?download=5:fusions-definitional-framework-for-food-waste

  • Gerbens-Leenes PW, Mekonnen MM, Hoekstra AY (2013) The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resour Ind 1–2:25–36

    Article  Google Scholar 

  • Global 2000 (n.d) Fleischatlas Österreich—Zurück zum Sonntagsbraten [cited 21 Aug 2015]. Available from: https://www.global2000.at/sites/global/files/import/content/fleisch/Sonntagsbraten_Hintergrundpapier4.pdf_me/Sonntagsbraten_Hintergrundpapier4.pdf

  • Hinterberger F, Burger E, Sellner G (2011) Schweinfleischproduktion in Österreich—Klimaauswirkung und Ressourceneffizienz. SERI Nachhaltigkeitsforschung- und -kommunikation, Wien

    Google Scholar 

  • Humanresearch (2015) Worldwide animal slaughter statistics [cited 10 Jun 2015]. Available from: http://www.humanresearch.org/content/worldwide-animal-slaughter-statistics

  • IPCC (2014) Summary for policymakers. climate change 2014: Mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K et al (eds) Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Katajajuuri J-M, Silvennoinen K, Hartikainen H, Heikkilä L, Reinikainen A (2014) Food waste in the Finnish food chain. J Clean Prod 73: 322–329. doi:10.1016/j.jclepro.2013.12.057

  • Kranert M, Schneider F, Hafner G, Lebersorger S, Barabosz J, Scherhaufer S et al (2012) Ermittlung der weggeworfenen Lebensmittelmengen und Vorschläge zur Minderung der Wegwerfrate bei Lebensmitteln in Deutschland [Identification of food waste amounts and suggestions for minimizing food waste in Germany]. Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Stuttgart

    Google Scholar 

  • Leip A, Weiss F, Wassenaar T, Perez I, Fellmann T, Loudjani P et al (2010) Evaluation of the livestock sector’s contribution to the EU greenhouse gas emissions (GGELS), Administrative Arrangements AGRI-2008–0245 and AGRI-2009-0296. European Commission, Joint Research Center, Italy

    Google Scholar 

  • Lesschen JP, van den Berg M, Westhoek HJ, Witzke HP, Oenema O (2011) Greenhouse gas emission profiles of European livestock sectors. Anim Feed Sci Technol 166–167:16–28

    Article  Google Scholar 

  • MA 48 (2014) Leistungsbericht 2014. MA 48—Abfallwirtschaft, Straßenreinigung und Fuhrpark, Wien

    Google Scholar 

  • Mekonnen MM, Hoekstra AY (2012) A global assessment of the water footprint of farm animal products. Ecosystems 15(3):401–415

    Article  Google Scholar 

  • Monier V, Mudgal S, Escalon V, Reisinger H, Dolley P, Ogilvie S, et al (2010) Preparatory study on food waste across EU 27. Technical report—2010-054, European Commission, Brussels

    Google Scholar 

  • Moveforhunger (2016) France cracks down on food waste [cited 30 May 2016]. Available from https://moveforhunger.org/france-cracks-down-on-food-waste/

  • Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Ecol Econ 60:498–508

    Article  Google Scholar 

  • Nguyen TP (2012) Greenhouse gas emissions from composting and anaerobic digestion plants. Dissertation. Rheinische Friedrich-Wilhelms-Universität, Bonn

    Google Scholar 

  • Obersteiner G, Schneider F (2006) NÖ Restmüllanalysen 2005/06. Studie im Auftrag des NÖ Abfallwirtschaftsverein. Wien

    Google Scholar 

  • OECD (2010) Guidance on sustainability impact assessments. OECD, Paris

    Google Scholar 

  • Papargyropoulou E, Lozano R, Steinberger JK, Wright N, Ujang ZB (2014) The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod 76:106–115

    Article  Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Phil Trans R Soc B 365:3065–3081

    Article  Google Scholar 

  • Partito Democratico (2015) Spreco zero, in commissione la legge Pd [cited 27 Aug 2015]. Available from: http://www.mariachiaragadda.it/spreco-zero-in-commissione-la-legge-pd/

  • Pope J, Annandale D, Morrison-Saunders A (2004) Environ Impact Asses 24:595–616

    Article  Google Scholar 

  • Quested T, Johnson H (2009) Household food and drink waste in the UK. WRAP, Oxon

    Google Scholar 

  • Ridoutt BG, Sanguansri P, Harper GS (2011) Comparing carbon and water footprints for beef cattle production in Southern Australia. Sustainability 3(12):2443–2455

    Article  Google Scholar 

  • Salhofer S, Obersteiner G, Schneider F, Lebersorger S (2008) Potentials for the prevention of municipal solid waste. Waste Manag 28(2):245–259

    Article  Google Scholar 

  • Schneider F, Lebersorger S (2009) Untersuchung der Lebensmittel im Restmüll in einer oberösterreichischen Region. Amt der OÖ Landesregierung, Direktion Umwelt und Wasserwirtschaft, Linz

    Google Scholar 

  • Selzer MM (2010) Die Entsorgung von Lebensmittel in Haushalten: Ursachen—Flüsse—Zusammenhänge. Diploma thesis. Wien

    Google Scholar 

  • Senat (2015) Séance du 26 mai 2015 (compte rendu intégral des débats) [cited 8 Jun 2015]. Available from: http://www.senat.fr/seances/s201505/s20150526/s20150526_mono.html#par_116

  • Singh RK, Murty HR, Gupta SK, Dikshit AK (2012) An overview of sustainability assessment methodologies. Ecol Indic 9:189–212

    Article  Google Scholar 

  • Stadtwerke Karlsruhe (2014) Karlsruher Trinkwasser—nahezu klimaneutral [cited 21 Aug 2015]. Available from: www.stadtwerke-karlsruhe.de/swka-de/…/trinkwasser-klimaneutral.pdf

  • Statistik Austria (2012) Der Außenhandel Österreichs. Statistik Austria, Wien

    Google Scholar 

  • Statistik Austria (2013) Versorgungsbilanzen für tierische Produkte. Statistik Austria, Wien

    Google Scholar 

  • Statistik Austria (2014a) Lebend- & Schlachtgewichte—Jahresergebnis 2014. Statistik Austria, Wien

    Google Scholar 

  • Statistik Austria (2014b) Statistik der Landwirtschaft. Statistik Austria, Wien

    Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • TAB (2015) Büro für Technikfolgenabschätzung beim Deutschen Bundestag. TAB-Fokus No. 6 regarding Report No. 163. Opportunities and criteria for a sustainability level [cited 3 Sept 2015]. Available at: http://www.tab-beim-bundestag.de/en/pdf/publications/tab-fokus/TAB-Fokus-006.pdf

  • Umweltbundesamt (2014a) Austria’s National Inventory Report 2014. REP-0475. BMLFUW, Wien, Vienna

    Google Scholar 

  • Umweltbundesamt (2014b) Berechnung von Treibhausgas (THG)-Emissionen verschiedener Energieträger [cited 21 Aug 2015]. Available from: http://www5.umweltbundesamt.at/emas/co2mon/co2mon.htm#Berechnungen

  • UNFCCC (2006) Updated UNFCCC reporting guidelines on annual inventories following incorporation of the provisions of decision 14/CP.1l. United Nations Framework Convention on Climate Change, Note by the secretariat, FCCC/SBSTA/2006/9

    Google Scholar 

  • United Nations (2015) United Nations sustainable development summit 2015 [cited 3 Sept 2015]. Available from: http://www.un.org/sustainabledevelopment/sustainable-development-goals/

  • USDA (2012) Food processing ingredients—an overview on the austrian food processing sector. USDA Foreign Agriculture Service, Washington

    Google Scholar 

  • Weiss F, Leip A (2012) Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model. Agric Ecosyst Environ 149:124–134

    Article  Google Scholar 

  • Winkler T, Schopf K, Aschemann R, Winiwarter W (2016) From farm to fork—a life cycle assessment of fresh Austrian pork. J Clean Prod 116:80–89. doi:10.1016/j.jclepro.2016.01.005

  • Winkler T, Winiwarter W (2015) Greenhouse gas emission scenarios of livestock in Austria. J Int Env Sci 12:107–119. doi:10.1080/1943815X.2015.1110186

  • WWF (2014) Soy report card—assessing the use of responsible soy for animal feed in Europe. WWF, Gland, Switzerland

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Aschemann .

Editor information

Editors and Affiliations

Annex: Overview of SIA Indicators and Their Values for Austria for BAU and RED Scenarios

Annex: Overview of SIA Indicators and Their Values for Austria for BAU and RED Scenarios

  

BAU scenario

RED scenario

 

Ind01a

 

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Net national consumption (t)

207,905

491,313

7454

121,515

138,603

327,542

4969

81,010

kg CO2-eq/kg meat

14.2

6.0

8.4

3.5

14.2

6.0

8.4

3.5

kg CO2-eq of net consumption

2,952,251,000

2,947,878,000

62,613,600

425,302,500

1,968,162,600

1,965,252,000

41,739,600

283,535,000

Sum (t CO2-eq)

   

6,388,045

   

4,258,690

Ind02b

 

Soy import (kg)

CO2-eq min (kg/kg of soy product)

CO2-eq max (kg/kg of soy product)

 

Soy import (kg)

CO2-eq min (kg/kg of soy product)

CO2-eq max (kg/kg of soy product)

 

Total soy (meal) feed = 530,000 t (30,000 t from Austria)

500,000,000

0.3

17.8

 

333,333,333

0.3

17.8

 
  

150,000,000

8,900,000,000

  

100,000,000

5.933.333.333

 

Sum (t CO2-eq)

 

150,000

8,900,000

  

100,000

5.933.333

 

Ind03c

 

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

CH4 emissions from enteric fermentation (t)

79,890

4470

2920

280

53,260

2980

1947

187

CH4 emissions from manure management (t)

5880

3500

70

1050

3920

2333

47

700

N2O emissions from manure management (t)

1290

180

80

230

860

120

53

153

CO2-eq (t)

3,300,600

324,620

125,500

113,760

2,200,400

216,413

83,667

75,840

Addit. N2O em. (t) to agric. soil

2150

   

1.433

   

Addit. N2O em. (t) to pasture, manures

300

   

200

   

CO2-eq (t)

730,100

   

486,733

   

Sum (t CO2-eq)

   

4,594,580

   

3,063,053

Ind04d

 

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Estimated Austrian water footprint (m³)

208,112,905

531,109,353

3,801,540

94,781,700

138,742,604

354,072,902

2,534,190

63,187,800

CO2-eq (t)

170,652

435,509

3117

77,721

113,769

290,340

2078

51,814

Sum (t CO2-eq)

   

686,999

   

458,001

Ind05e, g

 

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Average total waste water (l)

2,156,491,489

2,487,323,964

98,134,466

6,134,542,018

1,437,660,993

1,658,215,976

65,422,977

4,089,694,679

CO2-eq (t)

1768

2040

80

5030

1179

1360

54

3354

Sum (t CO2-eq)

   

8919

   

5946

Ind06f

 

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

Beef/cattle

Pork/pig

Sheep (& goat)

Poultry

MJ of total meat production (average value)

8,939,915,000

12,774,138,000

No data

2,673,330,000

5,959,929,000

8,516,092,000

No data

1782.220,0000

kWh

2,483,309,722

3,548,371,667

No data

742,591,667

1,655,535,833

2,365,581,111

No data

495,061,111

CO2-eq (t)

908,891

1,298,704

No data

271,789

605,926

865,803

No data

181,192

Sum (t CO2-eq)

   

2,479,384

   

1,652,921.79

  1. aLeip et al. (2010) and Statistik Austria (2013, 2014a)
  2. bCastanheira and Freire (2013), Global 2000 (n.d.) and WWF (2014)
  3. cUmweltbundesamt (2014a)
  4. dMekonnen and Hoekstra (2012), Stadtwerke Karlsruhe (2014) and Statistik Austria (2013, 2014a)
  5. eEuropean Commission (2005), Stadtwerke Karlsruhe (2014) and Statistik Austria (2014a)
  6. fde Vries and de Boer (2010), Statistik Austria (2014a) and Umweltbundesamt (2014b)
  7. gEutrophication potential included in Ind01

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Winkler, T., Aschemann, R. (2017). Decreasing Greenhouse Gas Emissions of Meat Products Through Food Waste Reduction. A Framework for a Sustainability Assessment Approach. In: Morone, P., Papendiek, F., Tartiu, V. (eds) Food Waste Reduction and Valorisation. Springer, Cham. https://doi.org/10.1007/978-3-319-50088-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50088-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50087-4

  • Online ISBN: 978-3-319-50088-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics