Skip to main content

A Review of and Taxonomy for Computer Supported Neuro-Motor Rehabilitation Systems

  • Chapter
  • First Online:
Recent Advances in Technologies for Inclusive Well-Being

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 119 ))

  • 1109 Accesses

Abstract

Stroke and other acquired brain injuries leave a staggering number of people worldwide with impaired motor abilities. Repetitive motion exercises can, thanks to brain plasticity, allow a degree of recovery, help adaptation and ultimately improve quality of life for survivors. The motivation for survivors to complete these exercises typically wanes over time as boredom sets in. To ease the effect of boredom for patients, research efforts have tied the rehabilitation exercises to computer games. Review of recent works found through Google scholar and Carleton’s summon service which indexes most of Carleton’s aggregate collection, using the key terms: stroke, acquired brain injury and video/computer games revealed a number of research efforts aimed primarily at proving the viability of these systems. There were two main results; (1) A classification scheme for computer neurological motor rehabilitation systems (CNMRS) was created based on the researched systems. (2) The systems reviewed all reported some degree of positive results—small sample sizes, large range of neuro-impairments, varied motion recording technology and different game designs make it problematic to formally quantify results, beyond a general net positive trend. The taxonomy presented here can be used to classify further works, to form the basis for meta-studies or larger long term longitudinal study and by neurological rehabilitation practitioners to help select and deploy systems to match client specific needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Stroke Association About Stroke. In: Am. Stroke Assoc. Build. Heal. lives, Free stroke Cardiovasc. Dis. http://www.strokeassociation.org/STROKEORG/AboutStroke/About-Stroke_UCM_308529_SubHomePage.jsp. Accessed 19 May 2015

  2. Murphy TH, Corbett D (2009) Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci 10:861–872. doi:10.1038/nrn2735

    Article  Google Scholar 

  3. Bonita R, Beaglehole R (1988) Recovery of motor function after stroke. Stroke 19:1497–1500. doi:10.1002/dev.20508

    Article  Google Scholar 

  4. Poltawski L, Boddy K, Forster A et al (2015) Motivators for uptake and maintenance of exercise: perceptions of long-term stroke survivors and implications for design of exercise programmes. Disabil Rehabil 37:795–801. doi:10.3109/09638288.2014.946154

    Article  Google Scholar 

  5. Werner RA, Kessler S (1996) Effectiveness of an intensive outpatient rehabilitation program for postacute stroke patients. Am J Phys Med Rehabil. doi:10.1097/00002060-199603000-00006

    Google Scholar 

  6. Alankus G, Proffitt R, Kelleher C, Engsberg J (2011) Stroke therapy through motion-based games. ACM Trans Access Comput 4:1–35. doi:10.1145/2039339.2039342

    Article  Google Scholar 

  7. Rego P, Moreira PM, Reis LP (2010) Serious games for rehabilitation: a survey and a classification towards a taxonomy. In: 2010 5th Iberian conference on information systems and technologies (CISTI). ISBN: 978-1-4244-7227-7

    Google Scholar 

  8. Betker AL, Desai A, Nett C et al (2007) Game-based exercises for dynamic short-sitting balance rehabilitation of people with chronic spinal cord and traumatic brain injuries. Phys Ther 87:1389–1398. doi:10.2522/ptj.20060229

    Article  Google Scholar 

  9. Ma M, Bechkoum K (2008) Serious games for movement therapy after stroke. IEEE Int Conf Syst Man Cybern 1872–1877. doi:10.1109/ICSMC.2008.4811562

  10. Burke JW, McNeill MDJ, Charles DK et al (2009) Optimising engagement for stroke rehabilitation using serious games. Vis Comput 25:1085–1099. doi:10.1007/s00371-009-0387-4

    Article  Google Scholar 

  11. Ryan M, Smith S, Chung B, Cossell S (2012) Rehabilitation games: designing computer games for balance rehabilitation in the elderly

    Google Scholar 

  12. Google ATAP (2015) Welcome to Project Soli. https://www.youtube.com/watch?v=0QNiZfSsPc0. Accessed 11 June 2015

  13. Microsoft (2015) Microsoft HoloLens| Official Site. https://www.microsoft.com/microsoft-hololens/en-us. Accessed 11 June 2015

  14. Zhao C, Hsiao C-P, Davis NM, Yi-Leun Do E (2013) Tangible games for stroke rehabilitation with digital box and blocks test. CHI’13 extended abstracts on human factors in computing systems—CHI EA’13, pp 523–528. doi:10.1145/2468356.2468448

  15. Cameirão MS, Bermúdez i Badia S, Zimmerli L et al. (2007) The rehabilitation gaming system: a virtual reality based system for the evaluation and rehabilitation of motor deficits. In: 2007 virtual rehabilitation. IWVR, pp 29–33

    Google Scholar 

  16. Tan CW, Chin SW, Lim WX (2013) Game-based human computer interaction using gesture recognition for rehabilitation. In: Proceedings of 2013 IEEE international conference on control system, computing and engineering, ICCSCE 2013, pp 344–349. doi:10.1109/ICCSCE.2013.6719987

  17. Chang C-Y, Lange B, Zhang M, et al. (2012) Towards pervasive physical rehabilitation using microsoft kinect. In: 6th international conference on pervasive computing technologies for healthcare, San Diego, USA, pp 159–162

    Google Scholar 

  18. Fraiwan MA, Khasawneh N, Malkawi A et al (2013) Therapy central: on the development of computer games for physiotherapy. In: 2013 9th international conference on innovation information technologies IIT, pp 24–29. doi:10.1109/Innovations.2013.6544388

  19. Rahman MA, Hossain D, Qamar AM, et al. (2014) A low-cost serious game therapy environment with inverse kinematic feedback for children having physical disability. In: Proceedings of international conference on multimedia retrieval—ICMR’14 529–531. doi:10.1145/2578726.2582619

  20. Fukamoto T (2010) NeuroRehab + the “Fun” factor. In: Proceedings of 5th ACM SIGGRAPH symposium on video games—sandbox’10 1:69–78. doi:10.1145/1836135.1836146

  21. Okošanovi MT, Kljaji J, Kosti MD (2014) Platform for integration of internet games for the training of upper extremities after stroke. In: 2014 12th symposium on neural network applications in electrical engineering (NEUREL). IEEE, Belgrade, pp 167–172

    Google Scholar 

  22. Adamovich SV, Merians AS, Lewis JA (2005) A virtual reality—based exercise system for hand rehabilitation. Presence 161–175

    Google Scholar 

  23. De O, Andrade K, Fernandes G, Martins J et al (2013) Rehabilitation robotics and serious games: an initial architecture for simultaneous players. ISSNIP Biosignals Biorobotics Conf BRC. doi:10.1109/BRC.2013.6487455

    Google Scholar 

  24. Perry JC, Zabaleta H, Belloso A et al (2013) ArmAssist: an integrated solution for telerehabilitation of post-stroke arm impairment. Converging Clin Eng Res NR 1:255–258. doi:10.1007/978-3-642-34546-3

    Google Scholar 

  25. Martin MV, Ishii K (2002) Design for variety: developing standardized and modularized product platform architectures. Res Eng Des 13:213–235. doi:10.1007/s00163-002-0020-2

    Article  Google Scholar 

  26. Calautti C, Baron J-C (2003) Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 34:1553–1566. doi:10.1161/01.STR.0000071761.36075.A6

    Article  Google Scholar 

  27. Betker AL, Szturm T, Moussavi ZK, Nett C (2006) Video game-based exercises for balance rehabilitation: a single-subject design. Arch Phys Med Rehabil 87:1141–1149. doi:10.1016/j.apmr.2006.04.010

    Article  Google Scholar 

  28. Crosbie J, Lennon S, McGoldrick M et al (2012) Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clin Rehabil 26:798–806. doi:10.1177/0269215511434575

    Article  Google Scholar 

  29. Da Silva Cameiro M, Bermúdez I Badia S, Duarte E et al (2011) Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restor Neurol Neurosci 29:287–98. doi:10.3233/RNN-2011-0599

  30. Cameirão M, Bermúdez I (2009) The rehabilitation gaming system: a review. Stud Health Technol

    Google Scholar 

  31. Harley L, Robertson S, Gandy M (2011) The design of an interactive stroke rehabilitation gaming system. Interact Users 167–173

    Google Scholar 

  32. Rahman A, Ahmed M, Qamar A et al (2014) Modeling therapy rehabilitation sessions using non-invasive serious games 1–4

    Google Scholar 

  33. Qamar A, Rahman MA, Basalamah S (2014) Adding inverse kinematics for providing live feedback in a serious game-based rehabilitation system, pp 215–220. doi:10.1109/ISMS.2014.43

  34. Bhattacharya S, Joshi C, Lahiri U, Chauhan A (2013) A step towards developing a virtual reality based rehabilitation system for individuals with post-stroke forearm movement disorders. In: CARE 2013—2013 IEEE international conference on robotics and automation, robotics and embedded systems. doi:10.1109/CARE.2013.6733743

  35. Brokaw EB, Brewer BR (2013) Development of the home arm movement stroke training environment for rehabilitation (HAMSTER) and evaluation by clinicians. In: Lecture notes in computer sciences (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 22–31

    Google Scholar 

  36. Crocher V, Hur P, Seo NJ (2013) Low-cost virtual rehabilitation games: house of quality to meet patient expectations. In: 2013 international conference on virtual rehabilitation, ICVR 2013, pp 94–100

    Google Scholar 

  37. Dukes PS, Hayes A, Hodges LF, Woodbury M (2013) Punching ducks for post-stroke neurorehabilitation: system design and initial exploratory feasibility study. In: IEEE symposium on 3D user interface 2013, 3DUI 2013—Proc 47–54. doi:10.1109/3DUI.2013.6550196

  38. Erazo O, Pino JA, Pino R, Fernández C (2014) Magic mirror for neurorehabilitation of people with upper limb dysfunction using kinect. In: Proceedings of annual Hawaii international conference on system sciences, pp 2607–2615. doi:10.1109/HICSS.2014.329

  39. Gil-Gómez J-A, Lloréns R, Alcañiz M, Colomer C (2011) Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J Neuroeng Rehabil 8:30. doi:10.1186/1743-0003-8-30

    Article  Google Scholar 

  40. Gonçalves ACBF, Consoni LJ, Amaral LMS (2013) Development and evaluation of a robotic platform for rehabilitation of ankle movements 8291–8298

    Google Scholar 

  41. Kafri M, Myslinski MJ, Gade VK, Deutsch JE (2013) Energy expenditure and exercise intensity of interactive video gaming in individuals poststroke. Neurorehabil Neural Repair 28:56–65. doi:10.1177/1545968313497100

    Article  Google Scholar 

  42. Kim EK, Kang JH, Park JS, Jung BH (2012) Clinical feasibility of interactive commercial nintendo gaming for chronic stroke rehabilitation. J Phys Ther Sci 24:901–903. doi:10.1589/jpts.24.901

    Article  Google Scholar 

  43. Kizony R, Weiss PL, Feldman Y et al (2013) Evaluation of a tele-health system for upper extremity stroke rehabilitation. In: 2013 international conference on virtual rehabilitation ICVR, pp 80–86. doi:10.1109/ICVR.2013.6662096

  44. Labruyère R, Gerber CN, Birrer-Brütsch K et al (2013) Requirements for and impact of a serious game for neuro-pediatric robot-assisted gait training. Res Dev Disabil 34:3906–3915. doi:10.1016/j.ridd.2013.07.031

    Article  Google Scholar 

  45. Maier M, Rubio Ballester B, Duarte E, et al (2014) Social integration of stroke patients through the multiplayer rehabilitation gaming system. Lecture notes in computer science (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 8395 LNCS:100–114. doi:10.1007/978-3-319-05972-3_12

  46. Mainetti R, Sedda A, Ronchetti M et al (2013) Duckneglect: video-games based neglect rehabilitation. Technol Heal Care 21:97–111. doi:10.3233/THC-120712

  47. Parafita R, Pires G, Nunes U, Castelo-Branco M (2013) A spacecraft game controlled with a brain-computer interface using SSVEP with phase tagging. In: SeGAH 2013—IEEE 2nd international conference on serious games and application for health. doi:10.1109/SeGAH.2013.6665309

  48. Siqueira AAG, Michmizos KP, Krebs HI (2013) Development of a robotic system for bilateral telerehabilitation. Ribeirão Preto, Brazil, pp 8427–8436

    Google Scholar 

  49. Saposnik G, Teasell R, Mamdani M et al (2010) Effectiveness of virtual reality using wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke 41:1477–1484. doi:10.1161/STROKEAHA.110.584979

    Article  Google Scholar 

  50. Sucar LE, Orihuela-Espina F, Velazquez RL et al (2014) Gesture therapy: an upper limb virtual reality-based motor rehabilitation platform. IEEE Trans Neural Syst Rehabil Eng 22:634–643. doi:10.1109/TNSRE.2013.2293673

    Article  Google Scholar 

  51. Vandermaesen M, Weyer T De, Coninx K et al (2013) Liftacube: a prototype for pervasive rehabilitation in a residential setting categories and subject descriptors. doi:10.1145/2504335.2504354

  52. Méndez AV (2013) The effects of Nintendo Wii®on the postural control of patients affected by acquired brain injury: a pilot study 3:76–94

    Google Scholar 

  53. Vourvopoulos A, Faria AL, Cameirao MS, Bermudez I Badia S (2013) RehabNet: a distributed architecture for motor and cognitive neuro-rehabilitation. In: 2013 IEEE 15th international conference on e-health networking, application and services (Healthcom), pp 454–459. doi:10.1109/HealthCom.2013.6720719

  54. Yavuzer G, Senel A, Atay MB, Stam HJ (2008) “Playstation eyetoy games” improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. Eur J Phys Rehabil Med 44:237–244

    Google Scholar 

  55. Caglio M, Latini-Corazzini L, D’Agata F et al (2012) Virtual navigation for memory rehabilitation in a traumatic brain injured patient. Neurocase 18:123–131. doi:10.1080/13554794.2011.568499

    Article  Google Scholar 

  56. Caglio M, Latini-Corazzini L, D’Agata F et al (2009) Video game play changes spatial and verbal memory: rehabilitation of a single case with traumatic brain injury. Cogn Process. doi:10.1007/s10339-009-0295-6

    Google Scholar 

  57. Rábago CA, Wilken JM (2011) Application of a mild traumatic brain injury rehabilitation program in a virtual realty environment: a case study. J Neurol Phys Ther 35:185–93. doi:10.1097/NPT.0b013e318235d7e6

  58. Holden MK, Dettwiler A, Dyar T et al (2001) Retraining movement in patients with acquired brain injury using a virtual environment. Stud Health Technol Inform 81:192–198

    Google Scholar 

  59. Mumford N, Duckworth J, Thomas PR et al (2012) Upper-limb virtual rehabilitation for traumatic brain injury: a preliminary within-group evaluation of the elements system. Brain Inj 26:166–176. doi:10.3109/02699052.2011.648706

    Article  Google Scholar 

  60. Mumford N, Duckworth J, Thomas PR et al (2010) Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system. Brain Inj 24:780–791. doi:10.3109/02699051003652807

    Article  Google Scholar 

  61. Ustinova KI, Leonard WA, Cassavaugh ND, Ingersoll CD (2011) Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI. J Neuroeng Rehabil 8:61. doi:10.1186/1743-0003-8-61

  62. Ustinova KI, Ingersoll CD, Cassavaugh N (2011) Short-term practice with customized 3D immersive videogame improves arm-postural coordination in patients with TBI. In: 2011 international conference virtual rehabilitation, ICVR 2011. doi:10.1109/ICVR.2011.5971864

  63. Grealy MA, Johnson DA, Rushton SK (1999) Improving cognitive function after brain injury: The use of exercise and virtual reality. Arch Phys Med Rehabil 80:661–667. doi:10.1016/S0003-9993(99)90169-7

  64. Housman SJ, Scott KM, Reinkensmeyer DJ (2009) A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil Neural Repair 23:505–514. doi:10.1177/1545968308331148

    Article  Google Scholar 

  65. Subramanian SK, Lourenco CB, Chilingaryan G et al (2012) Arm motor recovery using a virtual reality intervention in chronic stroke: randomized control trial. Neurorehabil Neural Repair. doi:10.1177/1545968312449695

    Google Scholar 

  66. Jinhwa J, Jaeho Y, Hyungkyu K (2012) Effects of virtual reality treadmill training on balance and balance self-efficacy in stroke patients with a history of falling. J Phys Ther Sci 24:1133–1136. doi:10.1589/jpts.24.1133

    Article  Google Scholar 

  67. Yang YR, Tsai MP, Chuang TY et al (2008) Virtual reality-based training improves community ambulation in individuals with stroke: a randomized controlled trial. Gait Posture 28:201–206. doi:10.1016/j.gaitpost.2007.11.007

    Article  Google Scholar 

  68. Broeren J, Claesson L, Goude D et al (2008) Virtual rehabilitation in an activity centre for community-dwelling persons with stroke: the possibilities of 3-dimensional computer games. Cerebrovasc Dis 26:289–296. doi:10.1159/000149576

    Article  Google Scholar 

  69. Kim JH, Jang SH, Kim CS et al (2009) Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil 88:693–701. doi:10.1097/PHM.0b013e3181b33350

    Article  Google Scholar 

  70. Jo K, Jung J, Yu J (2012) Effects of virtual reality-based rehabilitation on upper extremity function and visual perception in stroke patients: a randomized control trial. J Phys Ther Sci 24:1205–1208. doi:10.1589/jpts.24.1205

    Article  Google Scholar 

  71. Kwon J-S, Park M-J, Yoon I-J, Park S-H (2012) Effects of virtual reality on upper extremity function and activities of daily living performance in acute stroke: a double-blind randomized clinical trial. Neurorehabilitation 31:379–385. doi:10.3233/NRE-2012-00807

    Google Scholar 

  72. Cikajlo I, Rudolf M, Goljar N et al (2012) Telerehabilitation using virtual reality task can improve balance in patients with stroke. Disabil Rehabil 34:13–18. doi:10.3109/09638288.2011.583308

    Article  Google Scholar 

  73. Kiper P, Piron L, Turolla A et al (2011) The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke (Skutecznoœæ terapii w œrodowisku wirtualnym w pierwszych 12 miesi1cach po udarze mózgu). Neurol Neurochir Pol 45:436–444. doi:10.1016/S0028-3843(14)60311-X

    Google Scholar 

  74. Piron L, Turolla A, Agostini M et al (2010) Motor learning principles for rehabilitation: a pilot randomized controlled study in poststroke patients. Neurorehabil Neural Repair 24:501–508. doi:10.1177/1545968310362672

    Article  Google Scholar 

  75. Piron L, Tombolini P, Turolla A et al (2007) Reinforced feedback in virtual environment facilitates the arm motor recovery in patients after a recent stroke. Virtual Rehabil IWVR 2007:121–123. doi:10.1109/ICVR.2007.4362151

    Google Scholar 

  76. Mirelman A, Bonato P, Deutsch JE (2009) Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 40:169–174. doi:10.1161/STROKEAHA.108.516328

    Article  Google Scholar 

  77. Mirelman A, Patritti BL, Bonato P, Deutsch JE (2010) Effects of virtual reality training on gait biomechanics of individuals post-stroke. Gait Posture 31:433–437. doi:10.1016/j.gaitpost.2010.01.016

    Article  Google Scholar 

  78. You SH, Jang SH, Kim YH et al (2005) Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke 36:1166–1171. doi:10.1161/01.STR.0000162715.43417.91

    Article  Google Scholar 

  79. Agmon M, Perry CK, Phelan E, et al (2011) A pilot study of wii fit exergames to improve balance in older adults. J Geriatr Phys Ther 1. doi:10.1519/JPT.0b013e3182191d98

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Stephenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Stephenson, L., Whitehead, A. (2017). A Review of and Taxonomy for Computer Supported Neuro-Motor Rehabilitation Systems. In: Brooks, A., Brahnam, S., Kapralos, B., Jain, L. (eds) Recent Advances in Technologies for Inclusive Well-Being. Intelligent Systems Reference Library, vol 119 . Springer, Cham. https://doi.org/10.1007/978-3-319-49879-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49879-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49877-5

  • Online ISBN: 978-3-319-49879-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics