Skip to main content

An Introduction to Flow-Induced Instabilities in Rocket Engine Inducers and Turbopumps

  • Chapter
  • First Online:
Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines

Abstract

The article reviews the main forms of flow-induced instabilities detected in the liquid propellant turbopumps systems of modern rocket engines, with special reference to rotating stall, rotating cavitation, cavitation surge and higher order surge modes, illustrating their characteristics, origin and damage potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bhattacharyya, A. (1994). Internal Flows and Force Matrices in Axial Flow Inducers. Report No. E249.18, California Institute of Technology, Pasadena, USA.

    Google Scholar 

  • Bhattacharyya, A., Acosta, A. J., Brennen, C. E., & Caughey, T. K. (1997). Rotordynamic forces in cavitating inducers. ASME Journal of Fluids Engineering, 199(4), 768–774.

    Article  Google Scholar 

  • Braisted, D. M. (1979). Cavitation Induced Instabilities Associated with Turbomachines. In Report No. E184.2, California Institute of Technology, Pasadena, CA, USA.

    Google Scholar 

  • Brennen, C. E. (1994). Hydrodynamics of pumps. Oxford University Press, Oxford Engineering Science Series 44.

    Google Scholar 

  • Brennen, C. E., & Acosta, A. J. (1973). Theoretical, quasi-static analysis of cavitation compliance in turbopumps. Journal of Spacecraft, 10(3), 175–179.

    Article  Google Scholar 

  • Brennen, C. E., & Acosta, A. J. (1976). The dynamic transfer function for a cavitating inducer. ASME Journal of Fluids Engineering, 98, 182–191.

    Article  Google Scholar 

  • Brennen, C. E., & Braisted, D. M. (1980). Stability of hydraulic systems with focus on cavitating pumps. In Proceedings of IAHR Conference, Tokyo, Japan.

    Google Scholar 

  • Callenaere, M., Franc, J. P., & Michel, J. M. (1998, April 7–10). Influence of cavity thickness and pressure gradient on the unsteady behaviour of partial cavities. In 3rd International Symposium on Cavitation, Grenoble, France.

    Google Scholar 

  • Cervone, A., Testa, R., Bramanti, C., Rapposelli, E., & d’Agostino, L. (2005). Thermal Effects on Cavitation Instabilities in Helical Inducers. AIAA Journal of Propulsion and Power, 21(5), 893–899.

    Article  Google Scholar 

  • Cervone, A., Torre, L., Bramanti, C., Rapposelli, E., & d’Agostino, L. (2006). Experimental characterization of cavitation instabilities in a two-bladed axial inducer. AIAA Journal of Propulsion and Power, 22(6), 1389–1395.

    Google Scholar 

  • Cervone, A., Bramanti, C., Torre, L., Fotino, D., & d’Agostino, L. (2007). Setup of a high-speed optical system for the characterization of flow instabilities generated by cavitation. ASME Journal of Fluids Engineering, 129(7), 877–885.

    Google Scholar 

  • Cervone, A., Pace, G., Torre, L., Pasini, A., Bartolini, S., Agnesi, L., & d’Agostino, L. (2012, February 27–March 2). Effects of the leading edge shape on the performance of an axial three bladed inducer. In 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, ISROMAC-14, Honolulu, HI, USA.

    Google Scholar 

  • d’Agostino, L. (2013, September 19–22). On the hydrodynamics of rocket propellant engine inducers and turbopumps. In 6th International Conference on Pumps and Fans with Compressors and Wind Turbines (IPCF 2013), Beijing, China, IOP Publishing, IOP Conference Series: Materials Science and Engineering 52 (2013) 012004.

    Google Scholar 

  • d’Agostino, L., d’Auria, F., & Brennen, C. E. (1998). A three-dimensional analysis of rotordynamic forces on whirling and cavitating helical inducers. ASME Journal of Fluids Engineering, 120, 698–704.

    Google Scholar 

  • d’Agostino, L., & Salvetti, M. V. (Eds.). (2007). Fluid dynamics of cavitation and cavitating turbopumps. In CISM Courses and Lectures No. 496, International Centre for Mechanical Sciences. Vien and New York: Springer.

    Google Scholar 

  • Ehrich, F., & Childs, S. D. (1984, May). Self-excited vibrations in high performance turbomachinery. In Mechanical Engineering (pp. 66–79).

    Google Scholar 

  • Franc, J. P. (2001, June 20–23). Partial cavity instabilities and re-entrant jet. In CAV2001, International Symposium on Cavitation, Pasadena, CA, USA.

    Google Scholar 

  • Franz, R. J. (1989). Experimental Investigation of the Effect of Cavitation on the Rotordynamic Forces on a Whirling Centrifugal Pump Impeller. Ph.D. Thesis, California Institute of Technology, Pasadena, USA.

    Google Scholar 

  • Fuji, A., Azuma, S., Yoshida, Y., & Tsujimoto, Y. (2002, February 10–14). Higher order rotating cavitation in an inducer. In Proceedings of ISROMAC-9—The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.

    Google Scholar 

  • Furukawa, A., Ishizaka, K., & Watanabe, S. (2001, June 20–23). Experimental estimate of helical inducer blade forces in cavitation surge condition. In CAV2001, International Symposium on Cavitation, Pasadena, California USA.

    Google Scholar 

  • Furukawa, A., Ishizaka, K., & Watanabe, S. (2002). Experimental study of cavitation induced oscillation in two bladed inducers. In Space Launcher Liquid Propulsion: 4th International Conference on Space Launcher Technology, Liege, Belgium.

    Google Scholar 

  • Greitzer, E. M. (1981). The stability of pumping systems. ASME Journal of Fluids Engineering, 103, 193–242.

    Google Scholar 

  • Hashimoto, T., Yoshida, H., Funatsu, S., Hishimoto, J., Kamijo K., & Tsujimoto Y. (1997a). Rotating cavitation in three and four-bladed inducers. In 33th AIAA/ASME7SAE/ASEE Joint Propulsion Conference and Exhibit, Seattle, USA.

    Google Scholar 

  • Hashimoto, T., Yoshida, H., Watanabe, M., Kamijo, K., & Tsujimoto, Y. (1997b). Experimental study on rotating cavitation of rocket propellant pump inducers. Journal of Propulsion and Power, 13(4).

    Google Scholar 

  • Horiguchi, H., Arai, S., Fukutomi, J., Nakase, Y., & Tsujimoto, Y. (2003b, July 6–10). Quasi three-dimensional analysis of cavitation in an inducer. In 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, HIa, USA.

    Google Scholar 

  • Imamura, H., Kurokawa, J., Matsui, J., & Kikuchi, M. (2003, November 1–4). Suppression of cavitating flow in inducer by J-Groove. In CAV2003, International Symposium on Cavitation, Osaka, Japan.

    Google Scholar 

  • Kamijo, K., Shimura, T., & Watanabe, M. (1977). Experimental investigation of cavitating inducer instability. ASME Paper 77/WA-FE-14.

    Google Scholar 

  • Kang, D., Cervone, A., Yonezawa, K., Horiguchi, H., Kawata, Y., & Tsujimoto, Y. (2007). Effect of blade geometry on tip leakage vortex of inducer. In The 9th Asian International Conference on Fluid Machinery, Jeju, South Korea.

    Google Scholar 

  • Kawanami, Y., Kato, H., Yamaguchi, H., Tagaya, Y., & Tanimura, M. (1997). Mechanism and control of cloud cavitation. Journal of Fluids Engineering, 119, 788–795.

    Google Scholar 

  • Kimura, T., Yoshida, Y., Hashimoto, T., & Shimagaki, M. (2006). Numerical simulation for unsteady cavitating flow in a turbopump inducer. In CAV2006, 6th International Symposium on Cavitation, Wageningen, The Netherlands.

    Google Scholar 

  • Kubota, A., Kato, H., Yamaguchi, H., Maeda, M. (1989). Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique. Journal of Fluids Engineering, 111, 204–210.

    Google Scholar 

  • Lieblein, S. (1965). Experimental flow in two-dimensional cascades. In Aerodynamic Design of Axial Flow Compressors, NASA SP-36, 101–149.

    Google Scholar 

  • Murai, H. (1968). Observations of cavitation and flow patterns in an axial flow pump at low flow rates. Memoirs of the Institute of High Speed Mechanics, 24(246), Tohoku University.

    Google Scholar 

  • NASA. (1970). Prevention of Coupled Structure-Propulsion Instability. NASA SP-8055, Space Vehicle Design Criteria Manuals.

    Google Scholar 

  • NASDA. (2000a). Report No. 94, May 2000.

    Google Scholar 

  • NASDA. (2000b). Report No. 96, June 2000.

    Google Scholar 

  • Natanzon, M. S., et al. (1974). Experimental investigation of cavitation induced oscillations of helical inducers. Fluid Mechanics Soviet Research, 3(1), 38–45.

    Google Scholar 

  • Ng, S. L., & Brennen, C. E., (1978). Experiments on the dynamic behavior of cavitating pumps. ASME Journal of Fluids Engineering, 100, 166–176.

    Google Scholar 

  • Ohta, T., & Kajishima, T. (2008, February 17–22). Transition of different unsteady cavitating flows in 2D cascade with flat blades. In Proceedings of ISROMAC-12—The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA.

    Google Scholar 

  • Pace, G., Valentini, D., Pasini, A., Torre, L., Fu, X., d’Agostino, L. (2015). Geometry effects on flow instabilities of different three-bladed inducers. ASME J. Fluids Engineering, 137(4)/011102-1, 041304.

    Google Scholar 

  • Pasini, A., Torre, L., Cervone, A., & d’Agostino L. (2010). Rotordynamic forces on a four-bladed inducer. In Proceedings of 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Nashville, USA.

    Google Scholar 

  • Pasini, A., Torre, L., Cervone, A., & d’Agostino, L. (2011a). Characterization of the rotordynamic forces on tapered axial inducers by means of a rotating dynamometer and high-speed movies. In Proceedings of WIMRC 3rd International Cavitation Forum 2011, University of Warwick, United Kingdom.

    Google Scholar 

  • Pasini, A., Torre, L., Cervone, A., & d’Agostino, L. (2011b). Continuous spectrum of the rotordynamic forces on a four-bladed inducer. ASME J. Fluids Engineering, 133(12).

    Google Scholar 

  • Rosenmann, W. (1965). Experimental investigations of hydrodynamically induced shaft forces with a three bladed inducer. In Proceedings of ASME Symposium on Cavitation in Fluid Machinery.

    Google Scholar 

  • Rubin, S. (1966). Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO). Journal of Spacecraft and Rockets, 3(8), 1188–1195.

    Article  Google Scholar 

  • Sack, L. E., & Nottage, H. B. (1965). System oscillations associated to cavitating inducers. ASME Journal of Basic Engineering, 87, 917–924.

    Google Scholar 

  • Sakoda, M., Yakushiji, R., Maeda, M., & Yamaguchi, H. (2001, June 20–23). Mechanism of cloud cavitation generation on a 2-D hydrofoil. In CAV2001, International Symposium on Cavitation, Pasadena, California, USA.

    Google Scholar 

  • Sergeant, S. R., Sorensen, K. P., & McGlynn, R. D. (2008, February 17–22). Measurement of cavitation induced strain on a 3 bladed inducer. In Proceedings of ISROMAC-12—The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.

    Google Scholar 

  • Semenov, Y. A., Fujii, A., & Tsujimoto, Y. (2004). Rotating choke in cavitating turbopump inducer. ASME Journal of Fluids Engineering, 126, 87–93.

    Article  Google Scholar 

  • Shimagaki, M., Hashimoto, T., Watanabe, M., Hasegawa, S., Nakamura, N., & Shimura, T. (2006). Unsteady pressure fluctuations in an inducer. JSME International Journal of Fluids and Thermal Engineering, Series B, 49(3), 806–811.

    Google Scholar 

  • Shimiya, N., Fujii, A., Horiguchi, H., Uchiumi, M., Kurokawa, J., & Tsujimoto, Y. (2006). Suppression of cavitation instabilities in an inducer by J-Groove. In CAV2006, 6th International Symposium on Cavitation, Wageningen, The Netherlands.

    Google Scholar 

  • Shimura, T., Yoshida, M., Kamijo, K., Uchiumi, M., & Yasutomi, Y. (2002, February 10–14). Cavitation induced vibration caused by rotating-stall-type phenomenon in LH2 turbopump. In Proceedings of ISROMAC-9—The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, USA.

    Google Scholar 

  • Stripling, L. B. (1962). Cavitation in turbopumps, part 2. ASME Journal of Basic Engineering, 84(3), p. 329”.

    Google Scholar 

  • Stripling, L. B., & Acosta, A. J. (1962). Cavitation in turbopumps—part 1. ASME Journal of Basic Engineering, 84, 326–338.

    Google Scholar 

  • Subbaraman, M., & Patton, M. (2006). Suppressing higher-order cavitation phenomena in axial inducers. In CAV2006, 6th International Symposium on Cavitation, Wageningen, The Netherlands.

    Google Scholar 

  • Torre, L., Pasini, A., Cervone, A., Pecorari, L., Milani, A., & d’Agostino, L. (2010). Rotordynamic forces on a three bladed inducer. In Proceedings of Space Propulsion Conference, San Sebastian, Spain.

    Google Scholar 

  • Torre, L., Pasini, A., Cervone, A., & d’Agostino, L. (2011a). Continuous spectrum of the rotordynamic forces on a four-bladed inducer. In ASME/JSME/KSME Joint Fluids Engineering Conference, Hamamatsu, Japan.

    Google Scholar 

  • Torre, L., Pasini, A., Cervone, A., & d’Agostino, L. (2011). Experimental characterization of the rotordynamic forces on space rocket axial inducers. ASME Journal of Fluids Engineering, 133(10).

    Google Scholar 

  • Tsujimoto, Y. (2001, June 20–23). Simple rules for cavitation instabilities in turbomachinery. In CAV2001, International Symposium on Cavitation, Pasadena, California, USA.

    Google Scholar 

  • Tsujimoto, Y., Kamijo, K., & Yoshida, Y. (1993). A theoretical analysis of rotating cavitation in inducers. Journal of Fluids Engineering, 115.

    Google Scholar 

  • Tsujimoto, Y., Yoshida, Y., Maekawa, Y., Watanabe, S., & Hashimoto, T. (1997). Observations of oscillating cavitation of an inducer. ASME Journal of Fluids Engineering, 119, 775–781.

    Article  Google Scholar 

  • Tsujimoto, Y., Watanabe, S., & Horiguchi H. (1998, November 1–6). Linear analyses of cavitation instabilities of hydrofoils and cascades. In Proceedings of US-Japan Seminar: Abnormal Flow Phenomena in Turbomachinery, Osaka, Japan.

    Google Scholar 

  • Tsujimoto, Y., & Semenov, Y. A. (2002). New types of cavitation instabilities in inducers. In Space Launcher Liquid Propulsion: 4th International Conference on Space Launcher Technology, Liege, Belgium.

    Google Scholar 

  • Uchiumi, M., Kamijo, K., Hirata, K., Konno, A., Hashimoto, T., & Kobayasi, S. (2003). Improvement of inlet flow characteristics of LE-7A liquid hydrogen pump. Journal of Propulsion and Power,19(3).

    Google Scholar 

  • Uchiumi, M., & Kamijo, K. (2008, February 17–22). Occurrence range of a rotating-stall-type phenomenon in a high head liquid hydrogen inducer. In Proceedings of ISROMAC-12—The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA.

    Google Scholar 

  • Valentini, D., Pace, G., Pasini, A., Torre, L., & d’Agostino, L. (2015). Influences of the operating conditions on the rotordynamic forces acting on a three-bladed inducer under forced whirl motion. Journal of Fluids Engineering, 137(7), 071304.

    Google Scholar 

  • Wade, R. B., & Acosta, A. J. (1966). Experimental observations on the flow past a plano-convex hydrofoil. Journal of Basic Engineering, 87, 273–283.

    Google Scholar 

  • Watanabe, S., Yokota, K., Tsujimoto, Y., & Kamijo, K. (1999). Three-dimensional linear analysis of rotating cavitation in inducers using an annular cascade model. ASME Journal of Fluids Engineering, 121, 866–871.

    Article  Google Scholar 

  • Yamamoto, K. (1991). Instability in a cavitating centrifugal pump. JSME International Journal, Series II, 34, 9–17.

    Google Scholar 

  • Yoshida, Y., Kazami, Y., Nagaura, K., Shimagaki, M., Iga, Y., & Ikohagi, T. (2008). Interaction between uneven cavity length and shaft vibration at the inception of synchronous rotating cavitation. In Proceedings of ISROMAC-12—The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, HI, USA, February 17–22.

    Google Scholar 

  • Zoladz, T. (2000). Observations on rotating cavitation and cavitation surge from the development of the fastrac engine turbopump. In 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, AL, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca d’Agostino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

d’Agostino, L., Cervone, A., Torre, L., Pace, G., Valentini, D., Pasini, A. (2017). An Introduction to Flow-Induced Instabilities in Rocket Engine Inducers and Turbopumps. In: d'Agostino, L., Salvetti, M. (eds) Cavitation Instabilities and Rotordynamic Effects in Turbopumps and Hydroturbines. CISM International Centre for Mechanical Sciences, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-49719-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49719-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49717-4

  • Online ISBN: 978-3-319-49719-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics