Skip to main content

Magnetically Bistable Microwires: Properties and Applications for Magnetic Field, Temperature, and Stress Sensing

  • Chapter
  • First Online:
High Performance Soft Magnetic Materials

Abstract

Amorphous glass-coated microwires with positive magnetostriction are characterized by the magnetic bistability where the switching between the two stable magnetic states appears at the switching field. The switching field is sensitive to the external parameters like magnetic field, temperature, mechanical stress, etc., which gives us possibility to employ the microwires as a miniaturized sensing elements for the mentioned parameters.

Apart from this, there are many other advantages of microwires: the small dimensions (which allows them to be introduced inside various materials), glass-coating (that provides biocompatibility and protection against chemically aggressive environment), magnetic nature (for contactless sensing), simple production process (that allows very efficient production of large amount of wires in a short time), and many more favorable properties.

Within this chapter an overview of various parameters that affect the switching field of bistable microwires is given. Four different possibilities to use bistable microwires as sensors are shown: sensors of magnetic field, wide-range temperature sensors, selected temperature sensors for biomedical applications as well as stress sensor. At the end of each section, real applications of such sensors are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hudák, R., Varga, R., Živčák, J., Hudák, J., Blažek, J., Praslička, D.: Application of magnetic microwires in titanium implants—conception of intelligent sensoric implant. In: Madarász, L., Živčák, J. (eds.) Aspects of Computational Intelligence: Theory and Applications Topics in Intelligent Engineering and Informatics, pp. 413–434. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  2. Praslička, D., Blažek, J., Šmelko, M., Hudák, J., Čverha, A., Mikita, I., Varga, R., Zhukov, A.: Possibilities of measuring stress and health monitoring in materials using contact-less sensor based on magnetic microwires. IEEE Trans. Magn. 49, 128–131 (2013). doi:10.1109/TMAG.2012.2219854

    Article  ADS  Google Scholar 

  3. Vázquez, M.: Advanced magnetic microwires. In: Kronmüller, H., Parkin, S.S.P. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, pp. 2193–2226. Wiley, Chichester (2007)

    Google Scholar 

  4. Zhukov, A., Gonzalez, J., Vazquez, M., Larin, V., Torcunov, A.: Nanocrystalline and amorphous magnetic microwires. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, p. 23. Valencia, CA, American Scientific Publishers (2004)

    Google Scholar 

  5. Taylor, G.F.: A method of drawing metallic fillaments and a discussion of their properties and uses. Phys. Rev. 23, 655–660 (1924). doi:10.1103/PhysRev.23.655

    Article  ADS  Google Scholar 

  6. Klein, P., Varga, R., Vojtanik, P., Kovac, J., Ziman, J., Badini-Confalonieri, G.A., Vazquez, M.: Bistable FeCoMoB microwires with nanocrystalline microstructure and increased Curie temperature. J. Phys. D: Appl. Phys. 43(4), 045002-1–045002-6 (2010). doi:10.1088/0022-3727/43/4/045002

    Article  ADS  Google Scholar 

  7. Komova, E., Varga, M., Varga, R., Vojtanik, P., Bednarcik, J., Kovac, J., Provencio, M., Vazquez, M.: Nanocrystalline glass-coated FeNiMoB microwires. Appl. Phys. Lett. 93(6), 062502-1–062502-3 (2008). doi:10.1063/1.2969057

    Article  ADS  Google Scholar 

  8. Varga, R., Gamcova, J., Klein, P., Kovac, J., Zhukov, A.: Tailoring the switching field dependence on external parameters in magnetic microwires. IEEE Trans. Magn. 49(1), 30–33 (2013). doi:10.1109/TMAG.2012.2218224

    Article  ADS  Google Scholar 

  9. Li, L., Bao, C., Feng, X., Liu, Y., Fochan, L.: Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core. Rev. Sci. Instrum. 84(2), 024703 (2013). doi:10.1063/1.4792593

    Article  ADS  Google Scholar 

  10. Herzer, G.: Modern soft magnets: amorphous and nanocrystalline materials. Acta Mater. 61(3), 718–734 (2013). doi:10.1016/j.actamat.2012.10.040

    Article  Google Scholar 

  11. Michalik, S., Gamcova, J., Bednarčík, J., Varga, R.: In situ structural investigation of amorphous and nanocrystalline Fe40Co38Mo4B18 microwires. J. Alloys Compd. 509(7), 3409–3412 (2011). doi:10.1016/j.jallcom.2010.12.098

    Article  Google Scholar 

  12. Klein, P., Varga, R., Badini-Confalonieri, G.A., Vazquez, M.: Study of domain structure and magnetization reversal after thermal treatments in Fe40Co38Mo4B18 microwires. J. Magn. Magn. Mater. 323(24), 3265–3270 (2011). doi:10.1016/j.jmmm.2011.07.027

    Article  ADS  Google Scholar 

  13. Klein, P., Varga, R., Vázquez, M.: Stable and fast domain wall dynamics in nanocrystalline magnetic microwire. J. Alloys Compd. 550, 31–34 (2013). doi:10.1016/j.jallcom.2012.09.098

    Article  Google Scholar 

  14. Cullity, B.D.: Introduction to Magnetic Materials. Wiley, Hoboken (1972)

    Google Scholar 

  15. Varga, R., Garcia, K.L., Zhukov, A., Vazquez, M., Vojtanik, P.: Temperature dependence of the switching field and its distribution function in Fe-based bistable microwire. Appl. Phys. Lett. 83, 2620 (2003). doi:10.1063/1.1613048

    Article  ADS  Google Scholar 

  16. Klein, P., Varga, R., Badini-Confalonieri, G.A., Vazquez, M.: Study of the switching field in amorphous and nanocrystalline FeCoMoB microwire. IEEE Trans. Magn. 46, 357–360 (2010). doi:10.1109/TMAG.2009.2033348

    Article  ADS  Google Scholar 

  17. Varga, R., Zhukov, A., Zhukova, V., Blanco, J.M., Gonzalez, J.: Supersonic domain wall in magnetic microwires. Phys. Rev. B. 76, 132406-1–132406-3 (2007). doi:10.1103/PhysRevB.76.132406

    Article  ADS  Google Scholar 

  18. Varga, R., Garcia, K.L., Vazquez, M., Vojtanik, P.: Single-domain wall propagation and damping mechanism during magnetic switching of bistable amorphous microwires. Phys. Rev. Lett. 94, 017201 (2005). doi:10.1103/PhysRevLett.94.017201

    Article  ADS  Google Scholar 

  19. Varga, R., Richter, K., Zhukov, A., Larin, V.: Domain wall propagation in thin magnetic wires. IEEE Trans. Magn. 44(11), 3925–3930 (2008). doi:10.1109/TMAG.2008.2001997

    Article  ADS  Google Scholar 

  20. Richter, K., Varga, R., Badini-Confalonieri, G.A., Vazquez, M.: The effect of transverse field on fast domain wall dynamics in magnetic microwires. Appl. Phys. Lett. 96, 182507 (2010). doi:10.1063/1.3428367

    Article  ADS  Google Scholar 

  21. Olivera, J., Sánchez, M.L., Prida, V.M., Varga, R., Zhukova, V., Zhukov, A.P., Hernando, B.: Temperature dependence of the magnetization reversal process and domain structure in Fe77.5-xNixSi7.5B15 magnetic microwires. IEEE Trans. Magn. 44(11), 3946–3949 (2008). doi:10.1109/TMAG.2008.2002194

    Article  ADS  Google Scholar 

  22. Vazquez, M., Zhukov, A., Pirota, K.R., Varga, R., Garcia, K.L., Luna, C., Provencio, M., Navas, D., Martinez, J.L., Hernandez-Velez, M.: Temperature dependence of remagnetization process in bistable magnetic microwires. J. Non-Cryst. Solids. 329, 123–130 (2003). doi:10.1016/j.jnoncrysol.2003.08.025

    Article  ADS  Google Scholar 

  23. Vázquez, M., Zhukov, A.P., Garcia, K.L., Pirota, K.R., Ruiz, A., Martinez, J.L., Knobel, M.: Temperature dependence of magnetization reversal in magnetostrictive glass-coated amorphous microwires. Mater. Sci. Eng. A. 375–377, 1145–1148 (2004). doi:10.1016/j.msea.2003.10.200

    Article  Google Scholar 

  24. Vazquez, M., Hernando, A.: A soft magnetic wire for sensor applications. J. Phys. D: Appl. Phys. 29, 939–949 (1996). doi:10.1088/0022-3727/29/4/001

    Article  ADS  Google Scholar 

  25. Gonzalez, J., Blanco, J.M., Vazquez, M., Barandiaran, J.M., Rivero, G., Hernando, A.: Influence of the applied tensile stress on the magnetic properties of current annealed amorphous wires. J. Appl. Phys. 70, 6522–6524 (1991). doi:10.1063/1.349894

    Article  ADS  Google Scholar 

  26. Aragoneses, P., Blanco, J.M., Dominguez, L., Gonzalez, J., Zhukov, A., Vazquez, M.: The stress dependence of the switching field in glass-coated amorphous microwires. J. Phys. D: Appl. Phys. 31(21), 3040–3045 (1998). doi:10.1088/0022-3727/31/21/009

    Article  ADS  Google Scholar 

  27. O’Handley, R.C.: Magnetostrictin of transition-metal-metalloid glasses: temperature dependence. Phys. Rev. B. 18, 930–938 (1978). doi:10.1103/PhysRevB.18.930

    Article  ADS  Google Scholar 

  28. Hernando, A., Madurga, V., Núnez de Villavicencio, C., Vazquez, M.: Temperature dependence of the magnetostriction constant of nearly zero magnetostriction amorphous alloys. Appl. Phys. Lett. 45(7), 802 (1984). doi:10.1063/1.95371

    Article  ADS  Google Scholar 

  29. Richter, K., Varga, R., Zhukov, A.: Influence of the magnetoelastic anisotropy on the domain wall dynamics in bistable amorphous wires. J. Phys.: Condens. Matter. 24, 296003 (2012). doi:10.1088/0953-8984/24/29/296003

    Google Scholar 

  30. Chen, D.X., Dempsey, N.M., Vazquez, M., Hernando, A.: Propagating domain wall shape and dynamics in iron-rich amorphous wires. IEEE Trans. Magn. 31(1), 781–790 (1995). doi:10.1109/20.364597

    Article  ADS  Google Scholar 

  31. Kronmüller, H.: Theory of the coercive field in amorphous ferromagnetic alloys. J. Magn. Magn. Mater. 24(2), 159–167 (1981). doi:10.1016/0304-8853(81)90010-X

    Article  ADS  Google Scholar 

  32. Sabol, R., Varga, R., Hudak, J., Blazek, J., Praslicka, D., Vojtanik, P., Badini, G., Vazquez, M.: J. Appl. Phys. 111, 053919 (2012). doi:10.1063/1.3691961

    Article  ADS  Google Scholar 

  33. Sabol, R., Varga, R., Hudak, J., Blazek, J., Praslicka, D., Vojtanik, P., Badini, G., Vazquez, M.: Stress dependence of the switching field in glass-coated microwires with positive magnetostriction. J. Magn. Magn. Mater. 325, 141–143 (2013). doi:10.1016/j.jmmm.2012.08.030

    Article  ADS  Google Scholar 

  34. Sabol, R.: Technické aplikácie magnetických mikrodrôtov. Dissertation, Faculty of Aeronautics, Technical University of Kosice (2012)

    Google Scholar 

  35. Varga, R., Garcia, K.L., Luna, C., Zhukov, A., Vojtanik, P., Vazquez, M.: Distribution and temperature dependence of switching field in bistable magnetic amorphous microwires. Recent Res. Dev. Non-Cryst. Solids. 3, 85 (2003)

    Google Scholar 

  36. Chiriac, H., Ovari, T.A.: Switching field calculations in amorphous microwires with positive magnetostriction. J. Magn. Magn. Mater. 249(1–2), 141–145 (2002). doi:10.1016/S0304-8853(02)00522-X

    Article  ADS  Google Scholar 

  37. Mohri, K., Humprey, F.B., Kawashima, K., Kimura, K., Mizutani, M.: Large Barkhausen and Matteucci effects in FeCoSiB, FeCrSiB, and FeNiSiB amorphous wires. IEEE Trans. Magn. 26(5), 1789 (1990). doi:10.1109/20.104526

    Article  ADS  Google Scholar 

  38. Vojtanik, P., Degro, J., Nielsen, O.V.: Magnetic after effects in (Co1-xFex)75Si15B10 metallic glasses. Acta Phys. Slov. 42(6), 364–369 (1992)

    Google Scholar 

  39. Degro, J., Vojtanik, P., Nielsen, O.V.: Effect of field annealing on compositional dependences of some magnetic properties in (Co1-xFex)75Si15B10 metallic glasses. Phys. Status Solidi A. 132(1), 183–189 (1992). doi:10.1002/pssa.2211320120

    Article  ADS  Google Scholar 

  40. Ramanujan, R.V., Du, S.W.: Nanocrystalline structures obtained by the crystallization of an amorphous Fe40Ni38B18Mo4 soft magnetic alloy. J. Alloys Compd. 425(1–2), 251–260 (2006). doi:10.1016/j.jallcom.2005.10.096

    Article  Google Scholar 

  41. Andrejco, R., Varga, R., Marko, P., Vojtanik, P.: Magnetic properties of amorphous and nanocrystalline Fe-Ni-Mo-B alloys. Czech. J. Phys. 52(1), A113–A116 (2002). doi:10.1007/s10582-002-0026-z

    Article  Google Scholar 

  42. Li, J., Su, Z., Wei, F., Yang, Z., Hahn, H., Wang, T., Ge, S.: Magnetic properties of nanostructured Fe40Ni38Mo4B18. Chin. Phys. Lett. 16(3), 211–213 (1999). doi:10.1088/0256-307X/16/3/020

    Article  ADS  Google Scholar 

  43. Vojtanik, P., Varga, R., Andrejco, R., Agudo, P.: The evolution of magnetic properties of Fe73.5Cu1Nb3Si13.5B9 microwires during the devitrification process. J. Magn. Magn. Mater. 249(1–2), 136–140 (2002). doi:10.1016/S0304-8853(02)00521-8

    Article  ADS  Google Scholar 

  44. Yoshizawa, Y., Oguma, S., Yamauchi, K.: New Fe-based soft magnetic alloys composed of ultrafine grain structure. J. Appl. Phys. 64, 6044 (1988). doi:10.1063/1.342149

    Article  ADS  Google Scholar 

  45. Hernando, B., Olivera, J., Sánchez, M.L., Prida, V.M., Pérez, M.J., Santos, J.D., Gorria, P., Belzunce, F.J.: Soft magnetic properties, magnetoimpedance and torsion-impedance effects in amorphous and nanocrystalline FINEMET alloys: comparison between ribbons and wires. Phys. Met. Metallogr. 102(1), S13–S20 (2006). doi:10.1134/S0031918X06140043

    Article  ADS  Google Scholar 

  46. Olivera, J., Varga, R., Prida, V.M., Sanchez, M.L., Hernando, B., Zhukov, A.: Domain wall dynamics during the devitrification of Fe73.5CuNb3Si11.5B11 magnetic microwires. Phys. Rev. B. 82(9), 094414 (2010). doi:10.1103/PhysRevB.82.094414

    Article  ADS  Google Scholar 

  47. McHenry, M.E., Willard, M.A., Laughlin, D.E.: Amorphous and nanocrystalline materials for applications as soft magnets. Prog. Mater. Sci. 44(4), 291–433 (1999). doi:10.1016/S0079-6425(99)00002-X

    Article  Google Scholar 

  48. Li, H.F., Laughlin, D.E., Ramanujan, R.V.: Nanocrystallisation of an Fe44.5Co44.5Zr7B4 amorphous magnetic alloy. Philos. Mag. 86(10), 1355–1372 (2006). doi:10.1080/14786430500380142

    Article  ADS  Google Scholar 

  49. Mohanta, O., Ghosh, M., Mitra, A., Panda, A.K.: Enhanced ferromagnetic ordering through nanocrystallization in cobalt incorporated FeSiBNb alloys. J. Phys. D: Appl. Phys. 42(6), 065007 (2009). doi:10.1088/0022-3727/42/6/065007

    Article  ADS  Google Scholar 

  50. Gercsi, Z.S., Mazaleyrat, F., Varga, L.K.: High-temperature soft magnetic properties of Co-doped nanocrystalline alloys. J. Magn. Magn. Mater. 302(2), 454–458 (2006). doi:10.1016/j.jmmm.2005.10.014

    Article  ADS  Google Scholar 

  51. Škorvanek, I., Švec, P., Marcin, J., Kovac, J., Krenicky, T., Deanko, M.: Nanocrystalline Cu-free HITPERM alloys with improved soft magnetic properties. Phys. Status Solidi A. 196(1), 217–220 (2003). doi:10.1002/pssa.200306390

    Article  ADS  Google Scholar 

  52. Vlasak, G., Pavuk, M., Mrafko, P., Janičkovič, D., Švec, P., Butvinova, B.: Influence of heat treatment on magnetostrictions and electrical properties of (Fe1Co1)76Mo8Cu1B15. J. Magn. Magn. Mater. 320(20), e837–e840 (2008). doi:10.1016/j.jmmm.2008.04.168

    Article  ADS  Google Scholar 

  53. Conde, C.F., Conde, A.: Microstructure and magnetic properties of Mo containing Nanoperm-type alloys. Rev. Adv. Mater. Sci. 18(6), 565–571 (2008)

    Google Scholar 

  54. Ping, D.H., Wu, Y.Q., Hono, K., Willard, M.A., McHenry, M.E., Laughlin, D.E.: Microstructural characterization of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Scr. Mater. 45(7), 781–786 (2001). doi:10.1016/S1359-6462(01)01096-X

    Article  Google Scholar 

  55. Klein, P., Varga, R., Vazquez, M.: Domain wall dynamics in nanocrystalline microwires. Phys. Status Solidi C. 11(5–6), 1139–1143 (2014). doi:10.1002/pssc.201300707

    Article  Google Scholar 

  56. Klein, P., Varga, R., Vazquez, M.: Enhancing the velocity of the single domain wall by current annealing in nanocrystalline FeCoMoB microwires. J. Phys. D: Appl. Phys. 47, 255001 (2014). doi:10.1088/0022-3727/47/25/255001

    Article  ADS  Google Scholar 

  57. Klein, P., Varga, R., Komanicky, V., Badini-Confalonieri, G.A., Vazquez, M.: Effect of current annealing on domain wall dynamics in bistable FeCoMoB microwires. Solid State Phenom. 233–234, 281–284 (2015). doi:10.4028/www.scientific.net/SSP.233-234.281

    Article  Google Scholar 

  58. Chiriac, H., Ovari, T.A.: Amorphous glass-covered magnetic wires: preparation, properties, applications. Prog. Mater. Sci. 40, 333–407 (1996). doi:10.1016/S0079-6425(97)00001-7

    Article  Google Scholar 

  59. Chiriac, H., Lupu, N., Dobrea, V., Corodeanu, S.: Mechanical properties of magnetic Fe-based and Co-based amorphous wires and microwires. Phys. Status Solidi A. 206, 648–651 (2009). doi:10.1002/pssa.200881269

    Article  ADS  Google Scholar 

  60. Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48(1), 279–306 (2000). doi:10.1016/S1359-6454(99)00300-6

    Article  MathSciNet  Google Scholar 

  61. Kaloshikin, S.D., Tomilin, I.A., Jalnin, B.V., Kekalo, I.B., Shelekhov, E.V.: The influence of amorphous alloys composition on kinetics of crystallization with the nanocrystalline structure formation. Mater. Sci. Forum. 179–181, 557–562 (1995). doi:10.4028/www.scientific.net/MSF.179-181.557

    Article  Google Scholar 

  62. Mattern, N., Danzig, A., Muller, M.: Influence of additions on crystallization and magnetic properties of amorphous Fe77.5Si15.5B7. Mater. Sci. Forum. 179–181, 539–544 (1995). doi:10.4028/www.scientific.net/MSF.179-181.539

    Article  Google Scholar 

  63. Mattern, N., Danzig, A., Muller, M.: Effect of Cu and Nb on crystallization and magnetic properties of amorphous Fe77.5Si15.5B7 alloys. Mater. Sci. Eng. A. 194(1), 77–85 (1995). doi:10.1016/0921-5093(94)09666-X

    Article  Google Scholar 

  64. Zhang, Y.R., Ramanujan, R.V.: The effect of niobium alloying additions on the crystallization of a Fe–Si–B–Nb alloy. J. Alloys Compd. 403(1–2), 197–205 (2005). doi:10.1016/j.jallcom.2005.05.019

    Article  Google Scholar 

  65. Naohara, T.: The role of Nb in the nanocrystallization of amorphous Fe-Si-B-Nb alloys. Acta Mater. 46(2), 397–404 (1998). doi:10.1016/S1359-6454(97)00271-1

    Article  Google Scholar 

  66. Klein, P., Richter, K., Varga, R., Vazquez, M.: Frequency and temperature dependencies of the switching field in glass-coated FeSiBCr microwire. J. Alloys Compd. 569, 9–12 (2013). doi:10.1016/j.jallcom.2013.03.040

    Article  Google Scholar 

  67. Varga, R., Vojtanik, P., Kovac, J., Agudo, P., Vazquez, M., Lovas, A.: Influence of Cr on magnetic and structural properties of amorphous Fe80-xCrxSi6B14 (x=0–14) alloys. Acta Phys. Slovaca. 49(5), 901–904 (1999)

    Google Scholar 

  68. Lupu, N., Chiriac, H., Corodeanu, S., Ababei, G.: Development of Fe–Nb–Cr–B glassy alloys with low curie temperature and enhanced soft magnetic properties. IEEE Trans. Magn. 47(10), 3791–3794 (2011). doi:10.1109/TMAG.2011.2158528

    Article  ADS  Google Scholar 

  69. Varga, R., Vojtanik, P.: Temperature dependence of the magnetic properties of amorphous Fe80-xCrxSi6B14 (x=0–14) alloys. J. Magn. Magn. Mater. 196–197, 230–232 (1999). doi:10.1016/S0304-8853(98)00777-X

    Article  Google Scholar 

  70. Makino, A., Kubota, T., Chang, C., Makabe, M., Inoue, A.: FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness. J. Magn. Magn. Mater. 320(20), 2499–2503 (2008). doi:10.1016/j.jmmm.2008.04.063

    Article  ADS  Google Scholar 

  71. Richter, K., Varga, R., Infante, G., Badini-Confalonieri, G.A., Vazquez, M.: Domain wall dynamics in thin magnetic wires under the influence of transversal magnetic field. IEEE Trans. Magn. 46(2), 210–212 (2010). doi:10.1109/TMAG.2009.2032517

    Article  ADS  Google Scholar 

  72. Infante, G., Varga, R., Badini-Confalonieri, G.A., Vázquez, M.: Locally induced domain wall damping in a thin magnetic wire. Appl. Phys. Lett. 95, 012503 (2009). doi:10.1063/1.3174919

    Article  ADS  Google Scholar 

  73. Varga, R., Infante, G., Badini-Confalonieri, G.A., Vázquez, M.: Diffusion-damped domain wall dynamics. J. Phys.: Conf. Ser. 200, 042026 (2010). doi:10.1088/1742-6596/200/4/042026

    Google Scholar 

  74. Varga, R., Infante, G., Richter, K., Vázquez, M.: Anomalous effects in the domain-wall dynamics in magnetic microwires. Phys. Status Solidi A. 208, 509–514 (2011). doi:10.1002/pssa.201026371

    Article  ADS  Google Scholar 

  75. Chateau, E., Remy, L.: Oxidation-assisted creep damage in a wrought nickel-based superalloy: experiments and modelling. Mater. Sci. Eng. A. 527(7–8), 1655–1664 (2010). doi:10.1016/j.msea.2009.10.054

    Article  Google Scholar 

  76. Pollock, T.M., Tin, S.: Nickel-based superalloys for advanced turbine engines: chemistry microstructure and properties. J. Propul. Power. 22(2), 361–374 (2006). doi:10.2514/1.18239

    Article  Google Scholar 

  77. Romankiw, L.T.: A path: from electroplating through lithographic masks in electronics to LIGA in MEMS. Electrochim. Acta. 42(20–22), 2985–3005 (1997). doi:10.1016/S0013-4686(97)00146-1

    Article  Google Scholar 

  78. Zhang, Z.Y., Liang, B.N.: Tribological properties of FeNiCr coatings with the addition of La2O3 on 1045 carbon steel. Adv. Mater. Res. 852, 219–222 (2014). doi:10.4028/www.scientific.net/AMR.852.219

    Article  Google Scholar 

  79. Du Trémolet De Lacheisserie, E., Krishnan, R.: An improved capacitance method of measuring thermal expansion and magnetostriction of amorphous ribbons: application to FeNiCr metallic glasses. Rev. Phys. Appl. 18(11), 727–730 (1983)

    Article  Google Scholar 

  80. Krishnan, R., Dancygier, M., Tarhouni, M.: Magnetization studies of Cr concentration effects in amorphous Fe–Ni–Cr–B–Si ribbons. J. Appl. Phys. 53, 7768–7770 (1982). doi:10.1063/1.330200

    Article  ADS  Google Scholar 

  81. Chen, W., Zhou, S., Chen, J.: Magnetic properties of Fe- and FeNi-based amorphous composite ribbons. J. Mater. Sci. Technol. 16(02), 151–152 (2000)

    Google Scholar 

  82. Lovas, A., Böhönyey, A., Kiss, L.F., Kováč, J., Németh, P.: Some new results on amorphous Curie-temperature relaxation. Mater. Sci. Eng. A. 375–377, 1097–1100 (2004). doi:10.1016/j.msea.2003.10.143

    Article  Google Scholar 

  83. Németh, P., Böhönyey, A., Tichý, G., Kiss, L.F.: Anomalous Curie-point relaxation in a Cr-containing amorphous alloy. J. Magn. Magn. Mater. 320(5), 719–723 (2008). doi:10.1016/j.jmmm.2007.08.025

    Article  ADS  Google Scholar 

  84. Alvarez-Alonso, P., Santos, J.D., Perez, M.J., Sanchez-Valdes, C.F., Sanchez Llamazares, J.L., Gorria, P.: The substitution effect of chromium on the magnetic properties of (Fe1-xCrx)80Si6B14 metallic glasses (0.02≤x≤0.14). J. Magn. Magn. Mater. 347, 75–78 (2013). doi:10.1016/j.jmmm.2013.07.048

    Article  ADS  Google Scholar 

  85. Hilzinger, R., Rodewald, W.: Magnetic Materials: Fundamentals, Products, Properties, Applications. Publicis MCD Verlag, Erlangen (2013)

    Google Scholar 

  86. Antonione, C., Battezzati, L., Lucci, A., Riontino, G., Tabasso, M., Venturello, G.: Effect of composition in (Fe,Ni,Cr)(P,B) and (Fe,Ni,Mo)B metallic glasses. J. Phys. Colloq. 41, C8-131–C8-134 (1980). doi:10.1051/jphyscol:1980834

    Article  Google Scholar 

  87. Chiriac, H., Ovári, T.A., Pop, G.: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B. 52, 10104–10113 (1995). doi:10.1103/PhysRevB.52.10104

    Article  ADS  Google Scholar 

  88. Antonov, A.S., Borisov, V.T., Borisov, O.V., Prokoshin, A.F., Usov, N.A.: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D: Appl. Phys. 33(10), 1161–1168 (2000). doi:10.1088/0022-3727/33/10/305

    Article  ADS  Google Scholar 

  89. Larin, V.S., Torcunov, A.V., Zhukov, A., Gonzalez, J., Vazquez, M., Panina, L.: Preparation and properties of glass-coated microwires. J. Magn. Magn. Mater. 249(1–2), 39–45 (2002). doi:10.1016/S0304-8853(02)00501-2

    Article  ADS  Google Scholar 

  90. Klein, P., Varga, R., Vazquez, M.: Temperature dependence of magnetization process in bistable amorphous and nanocrystalline FeCoMoB microwires. Acta Phys. Pol. A. 118, 809–810 (2010)

    Article  Google Scholar 

  91. Hernando, A., Marin, P., Vazquez, M., Barandiaran, J.M., Herzer, G.: Thermal dependence of coercivity in soft magnetic nanocrystals. Phys. Rev. B. 58(1), 366–370 (1998). doi:10.1103/PhysRevB.58.366

    Article  ADS  Google Scholar 

  92. Škorvánek, I., O’Handley, R.C.: Fine-particle magnetism in nanocrystalline Fe-Cu-Nb-Si-B at elevated temperatures. J. Magn. Magn. Mater. 140-144(1), 467–468 (1995). doi:10.1016/0304-8853(94)00734-9

    Article  Google Scholar 

  93. Škorvánek, I., Kováč, J., Kötzler, J.: Temperature evolution of coercive field and thermal relaxation effects in nanocrystalline FeNbB alloys. J. Magn. Magn. Mater. 272–276, 1503–1505 (2004). doi:10.1016/j.jmmm.2003.12.553

  94. Franco, V., Conde, C.F., Conde, A., Kiss, L.F., Kemény, T.: Transition to superparamagnetism in a Cr-containing Finemet-type alloy. IEEE Trans. Magn. 38(5), 3069–3074 (2002). doi:10.1109/TMAG.2002.802115

    Article  ADS  Google Scholar 

  95. Varga, R., Vojtanik, P., Lovas, A.: Time and thermal stability of magnetic properties of amorphous Fe80TM3B17 alloys. J. Phys. IV (France). 08, Pr2-63–Pr2-66 (1998)

    Google Scholar 

  96. Gonzalez, J., Zhukov, A., Zhukova, V., Cobeno, A.F., Blanco, J.M., de Arellano-Lopez, A.R., Lopez-Pombero, S., Martinez-Fernandez, J., Larin, V., Torcunov, A.: High coercivity of partially devitrified glass-coated Finemet microwires: effect of geometry and thermal treatment. IEEE Trans. Magn. 36(5), 3015–3017 (2000). doi:10.1109/20.908660

    Article  ADS  Google Scholar 

  97. Hudak, R., Varga, R., Polacek, I., Klein, P., Skorvanek, I., Komanicky, V., del Real, R.P., Vazquez, M.: Addition of a Molybdenum into a amorphous glass-coated microwires usable as a temperature sensors in biomedical application. Phys. Status Solidi A. 213, 377–383 (2015)

    Article  Google Scholar 

  98. Bergmann, G., Graichen, F., Dymke, J., Rohlmann, A., Duda, G.N., Damm, R.: High-tech hip implant for wireless temperature measurements in vivo. PLoS One. 7(8), e43489 (2012). doi:10.1371/journal.pone.0043489

    Article  ADS  Google Scholar 

  99. Sabol, R., Rovnak, M., Klein, P., Vazquez, M., Varga, R.: Mechanical stress dependence of the switching field in amorphous microwires. IEEE Trans. Magn. 51, 2000304-1–2000304-4 (2015). doi:10.1109/TMAG.2014.2357580

    Article  Google Scholar 

  100. Hudak, R., Varga, R., Hudak, J., Praslicka, D., Polacek, I., Klein, P., El Kammouni, R., Vazquez, M.: Influence of fixation on magnetic properties of glass-coated magnetic microwires for biomedical applications. IEEE Trans. Magn. 51(1), 5200104 (2015). doi:10.1109/TMAG.2014.2359498

    Article  Google Scholar 

  101. Hudak, R., Varga, R., Hudak, J., Praslicka, D., Blazek, J., Polacek, I., Klein, P.: Effect of the fixation patterns on magnetic characteristics of amorphous glass-coated sensoric microwires. Acta Phys. Pol. A. 126(1), 417–418 (2014). doi:10.12693/APhysPolA.126.417

    Article  Google Scholar 

  102. Gamcova, J., Varga, R., Hernando, B., Zhukov, A.: The study of magnetization process in amorphous FeNiSiB microwires. Acta Phys. Pol. A. 118(5), 807–808 (2010)

    Article  Google Scholar 

  103. Komova, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: Frequency dependence of the single domain wall switching field in glass-coated microwires. J. Phys.: Condens. Matter. 19(23), 236229 (2007). doi:10.1088/0953-8984/19/23/236229

    ADS  Google Scholar 

  104. Varga, R.: Magnetization processes in glass-coated microwires with positive magnetostriction. Acta Phys. Slovaca. 62(5), 411–518 (2012). doi:10.2478/v10155-012-0002-5

    Google Scholar 

  105. Komova, E., Varga, M., Varga, R., Vojtanik, P., Torrejon, J., Provencio, M., Vazquez, M.: Stress dependence of the switching field in glass coated microwires. Acta Phys. Pol. A. 113(1), 135–138 (2008)

    Article  ADS  Google Scholar 

  106. Olivera, J., Varga, R., Anaya, J., Zhukov, A.: Stress dependence of switching field during the devitrification of Finemet-based magnetic microwires. Key Eng. Mater. 543, 495–498 (2013). doi:10.4028/www.scientific.net/KEM.543.495

    Article  Google Scholar 

  107. Kronmüller, H., Fähnle, M.: Micromagnetism and the Microstructure of the Ferromagnetic Solids. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  108. Olivera, J., González, M., Fuente, J.V., Varga, R., Zhukov, A., Anaya, J.J.: An embedded stress sensor for concrete shm based on amorphous ferromagnetic microwires. Sensors. 14, 19963–19978 (2014). doi:10.3390/s141119963

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project NanoCEXmat Nr. ITMS 26220120019, Slovak VEGA Grant Nos. 1/0164/16, 2/0192/13, APVV-0027-11, APVV-0266-10, and APVV-0492-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rastislav Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Varga, R. et al. (2017). Magnetically Bistable Microwires: Properties and Applications for Magnetic Field, Temperature, and Stress Sensing. In: Zhukov, A. (eds) High Performance Soft Magnetic Materials. Springer Series in Materials Science, vol 252. Springer, Cham. https://doi.org/10.1007/978-3-319-49707-5_8

Download citation

Publish with us

Policies and ethics